Skip to main content
Log in

The over-expression of an alfalfa RING-H2 gene induces pleiotropic effects on plant growth and development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The alfalfa MsRH2-1 gene encodes a small protein with a RING-H2 motif and an N-terminal transmembrane domain. The transcript can be found in all tested plant organs, but roots and nodules show the highest levels of RH2-1 mRNA accumulation. Promoter-GUS fusion studies demonstrate that the activity of this gene is closely correlated with development of lateral roots (in alfalfa and Arabidopsis) and symbiotic nodules (in alfalfa). Although antisense-expressing alfalfa plants did not show a significantly different phenotype from the control plants, by contrast, when the level of the MsRH2-1 RNA was raised by introducing the coding part of the gene under the control of the CaMV promoter, both the transgenic alfalfa and Arabidopsis lines exhibited dramatic alterations in plant morphology, including shorter stature, increased apical dominance, leaf hyponasty, and inhibition of leaf venation and lateral root development. Moreover, nodulation of transgenic alfalfa roots was delayed and partially inhibited, and some of the Arabidopsis lines showed abnormal floral development. The nature of pleiotropic developmental phenotypes suggests a hormonal basis. The possible connection between MsRH2-1 function and substrate specific degradation via the ubiquitin pathway involved in auxin signaling is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Google Scholar 

  • Barnes, D.K., Vance, C.P., Heichel, G.H., Peterson, M.A. and Ellis, W.R. 1988. Registration of a non-nodulation and three ineffective nodulation alfalfa germplasms. Curr. Biol. 28: 721–722.

    Google Scholar 

  • Blackwell, T.K., Bowerman, B., Priess, J.R. and Weintraub, H. 1994. Formation of a monomeric DNA binding domain by Skn-1 bZIP and homeodomain elements. Science 266: 621–628.

    Google Scholar 

  • Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.

    Google Scholar 

  • Cserzo, M., Wallin, E., Simon, I., von Heijne, G. and Elofsson, A. 1997. Prediction of transmembrane β-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10: 673–676.

    Google Scholar 

  • de Billy, F., Grosjean, C., May, S., Bennett, M. and Cullimore, J.V. 2001. Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol. Plant-Microbe Interact. 14: 267–277.

    Google Scholar 

  • Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19–21.

    Google Scholar 

  • Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A. and Quail, P.H. 1992. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G β homologous domain. Cell 71: 791–801.

    Google Scholar 

  • Dudits, D., Györgyey, J., Bögre, L. and Bakó, L. 1995. Molecular biology of somatic embryogenesis. In: T.A. Thorpe (Ed.) In Vitro Embryogenesis in Plants, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 267–308.

    Google Scholar 

  • Ehrhardt, D.W., Wais, R. and Long, S.R. 1996. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85: 673–681.

    Google Scholar 

  • Fang, Y. and Hirsch, A.M. 1998. Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol. 116: 53–68.

    Google Scholar 

  • Freemont, P.S. 2000. RING for destruction? Curr. Biol. 10: R84-R87.

    Google Scholar 

  • Gray, W.M. and Estelle, M. 2000. Function of the ubiquitinproteasome pathway in auxin response. Trends Biochem. Sci. 25: 133–138.

    Google Scholar 

  • Griffith, M.E., da Silva, C.A. and Smyth, D.R. 1999. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development 126: 5635–5644.

    Google Scholar 

  • Hanson, I.M., Poustka, A. and Trowsdale, J. 1991. New genes in the class II region of the human major histocompatibility complex. Genomics 10: 417–424.

    Google Scholar 

  • Hershko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425–479.

    Google Scholar 

  • Hirsch, A.M., Brill, L.M., Lim, P.O., Scambray, J. and van Rhijn, P. 1995. Steps toward defining the role of lectins in nodule development in legumes. Symbiosis 19: 155–173.

    Google Scholar 

  • Hirsch, A.M., Lum, M.R., Krupp, R.S.N., Yang, W. and Karlowski, W.M. 2000. Melilotus alba Desr., white sweetclover, a mellifluous model legume. In: Prokaryotic Nitrogen Fixation: A Model System for Analysis of a Biological Process, Horizon Scientific Press, Wymondham, UK, pp. 627–642.

    Google Scholar 

  • Hoagland, D.R. and Arnon, D.T. 1938. The water-culture method for growing plants without soil. California Agriculture Experiment Station Circular 347.

  • Hofmann, K. and Stoffel, W. 1993. TMbase: a database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 347: 166.

    Google Scholar 

  • Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep.5: 387–405.

    Google Scholar 

  • Jensen, R.B., Jensen, K.L., Jespersen, H.M. and Skriver, K. 1998. Widespread occurrence of a highly conserved RING-H2 zinc finger motif in the model plant Arabidopsis thaliana. FEBS Lett. 436: 283–287.

    Google Scholar 

  • Joazeiro, C.A. and Weissman, A.M. 2000. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102: 549–552.

    Google Scholar 

  • Kapros, T., Bögre, L., Nemeth, K., Bak, L., Györgyey, J., Wu, S.C. and Dudits, D. 1992. Differential expression of histone H3 gene variants during cell cycle and somatic embryogenesis in alfalfa. Plant Physiol. 98: 621–625.

    Google Scholar 

  • Karlowski, W.M., Strozycki, P.M. and Legocki, A.B. 2000. Characterization and expression analysis of the yellow lupin (Lupinus luteus L.) gene coding for nodule specific proline-rich protein. Acta Biochim. Pol. 47: 371–383.

    Google Scholar 

  • Kosarev, P., Mayer, K.F.X. and Hardtke, C.S. 2002. Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biol. 3: 1–12.

    Google Scholar 

  • Lu, C. and Fedoroff, N. 2000. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12: 2351–2366.

    Google Scholar 

  • Malamy, J.E. and Benfey, P.N. 1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124: 33–44.

    Google Scholar 

  • Martinez-Garcia, M., Garciduenas-Pina, C. and Guzman, P. 1996. Gene isolation in Arabidopsis thaliana by conditional overexpression of cDNAs toxic to Saccharomyces cerevisiae: identi-fication of a novel early response zinc-finger gene. Mol. Gen. Genet. 252: 587–596.

    Google Scholar 

  • Matsuda, N. and Nakano, A. 1998. RMA1, an Arabidopsis thaliana gene whose cDNA suppresses the yeast sec15 mutation, encodes a novel protein with a RING finger motif and amembrane anchor. Plant Cell Physiol. 39: 545–554.

    Google Scholar 

  • Matsuda, N., Suzuki, T., Tanaka, K. and Nakano, A. 2001. Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J. Cell Sci. 114: 1949–1957.

    Google Scholar 

  • McKhann, H.I. and Hirsch, A.M. 1993. In situ localization of specific mRNAs in plant tissues. In: B.R. Glick and J.E. Thompson (Eds.) Methods in Plant Molecular Biology, CRC Press, Boca Raton, FL, pp. 179–203.

    Google Scholar 

  • Reed, J.W. 2001. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci. 6: 420–425.

    Google Scholar 

  • Reintanz, B., Lehnen, M., Reichelt, M., Gershenzon, J., Kowalczyk, M., Sandberg, G., Godde, M., Uhl, R. and Palme, K. 2001. bus, a bushy Arabidopsis cyp79f1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13: 351–367.

    Google Scholar 

  • Salinas-Mondragon, R.E., Garciduenas-Pina, C. and Guzman, P. 1999. Early elicitor induction in members of a novel multigene family coding for highly related RING-H2 proteins in Arabidopsis thaliana. Plant Mol. Biol. 40: 579–590.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F, and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Schauser, L., Christensen, L., Borg, S. and Poulsen, C. 1995. PZF, a cDNA isolated from Lotus japonicus and soybean root nodule libraries, encodes a new plant member of the RING-finger family of zinc-binding proteins. Plant Physiol. 107: 1457–1458.

    Google Scholar 

  • Torii, K.U., Stoop-Myer, C.D., Okamoto, H., Coleman, J.E., Matsui, M. and Deng, X.W. 1999. The RING finger motif of photomorphogenic repressor COP1 specifically interacts with the RING-H2 motif of a novel Arabidopsis protein. J. Biol. Chem. 274: 27674–27681.

    Google Scholar 

  • Tyers, M. and Jorgensen, P. 2000. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 10: 54–64.

    Google Scholar 

  • Zou, J. and Taylor, D.C. 1997. Cloning and molecular characterization of an Arabidopsis thaliana RING zinc finger gene expressed preferentially during seed development. Gene 196: 291–295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech M. Karlowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlowski, W.M., Hirsch, A.M. The over-expression of an alfalfa RING-H2 gene induces pleiotropic effects on plant growth and development. Plant Mol Biol 52, 121–133 (2003). https://doi.org/10.1023/A:1023916701669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023916701669

Navigation