Skip to main content
Log in

Self-Propagating High-Temperature Synthesis of Functionally Graded PVD Targets with a Ceramic Working Layer of TiB2-TiN or Ti5Si3-TiN

  • Published:
Journal of Materials Synthesis and Processing

Abstract

Two- and three-layer functionally graded PVD targets with a “working” layer (sputtering surface) based on TiN-TiB2 or TiN-Ti5Si3 formation via the technology of forced SHS compaction were considered. It was shown that rather wide (up to 1 mm) transition diffusional zones providing firm adhesion of the layers were formed between the working, intermediate, and third layers. The compositions TiN + TiB2 + 20%Cu and TiB2 + 50%Cu were found to be optimum for the intermediate (“damping”) and third layers of the three-layer PVD targets. The specific features of phase and structure formation of the two- and three-layer products with the working layer based on TiN-TiB2 and TiN-Ti5Si3 were elucidated. Variation of the “chemical oven” mass exerted a noticeable effect of reduction of the residual porosity and enlarging of the grains of the product phases owing to prolongation of the time for secondary structure formation. The relationship of the hardness of the layers in the functionally graded target on the chemical oven mass allow prediction of the properties of the resultant graded material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. J. Moore, A. O., R. Torres, I. Reimanis, G. Mustoe, K. Upadhya, and E. A. Int. J. SHS 6, 277–294.

  2. E. A. Levashov, A. S. Rogachev, V. I. Yukhvid, and I. P. Borovinskaya, Physicochemical and Technological Fundamentals of Selfpropagating High-temperature Synthesis (Izd-vo BINOM, Moscow, 1999) p. 176.

    Google Scholar 

  3. H. E. Grigoryan, Self-Propagating High-Temperature Synthesis of Ceramic, Metallocermic and Functionally Gradient Materials, Ph.D. Thesis, Chernogolovka, 2000 p. 143.

  4. H. E. Grigoryan, A. S. Rogachev, A. E. Sytschev, and E. A. Levashov, in Materials Science of Carbides, Nitrides, and Borides (NATO Adv. Study Inst. 1998) p. 36–44.

  5. E. H. Grigoryan, A. S. Rogachev, A. E. Sytschev, and E. A. Levashov, Refrect. Techn. Ceramics (Russ.) 11, 7–11 (1999).

    Google Scholar 

  6. E. A. Levashov, R. G. Rahbari, A. N. Ivanov, and B. R. Senatulin, Izv. VUZov, Tsvet. Metall. 2, 55–61 (2000).

    Google Scholar 

  7. E. A. Levashov, R. G. Rahbari, B. R. Senatulin, and A. N. Ivanov, Tsvet. Metall. 2, 77–84 (2000).

    Google Scholar 

  8. H. E. Grigoryan, R. G. Rahbari, A. S. Rogachev, E. A. Levashov, V. I. Ponomarev, A. N. Sheveiko, D. V. Shtansky, and A. N. Ivanov, Izv. VUZov, Tsvet. Metall. 1, 55–70 (2000).

    Google Scholar 

  9. D. V. Shtansky and E. A. Levashov, Izv. VUZov, Tsvet. Metall. 3, 52–62 (2001).

    Google Scholar 

  10. D. V. Shtansky, E. A. Levashov, N. N. Khavsky, and J. J. Moore, Izv. VUZov, Tsvet. Metall. 1, 59–68 (1996).

    Google Scholar 

  11. D. V. Shtansky, E. A. Levashov, V. I. Kosyanin, N. B. Dyakonova, and I. V. Lyasotsky, Fiz. Met. Metalloved. 80, 120–132 (1995).

    Google Scholar 

  12. D. V. Shtansky, E. A. Levashov, A. N. Sheveiko, and J. J. Moore, J. Mater. Synth. Proc. 7, 187–193, (1999).

    Google Scholar 

  13. D. V. Shtansky, E. A. Levashov, A. N. Sheveiko, H. E. Grigoryan, and J. J. Moore, Int. J. SHS 7, 249–262 (1998).

    Google Scholar 

  14. I. Gotman, N. A. Travitsky, and E. Y. Gutmanas, Mater. Sci. Eng. A224, 127–137 (1998).

    Google Scholar 

  15. G. V. Samsonov and I. M. Vinnitsky, Refractory Compounds (Handbook) (Metallurgiya, Moscow, 1976) p. 558.

    Google Scholar 

  16. I. P. Borovinskaya, G. A. Vishnyakova, V. M. Maslov, and A. G. Merzhanov, On the possibility of production of composite materials in the combustion mode, Processes of Combustion in Chemical Technology and Metallurgy (Chernogolovka, 1975) pp. 141–149.

  17. A. N. Pityulin, in Self-Propagating High-Temperature Synthesis: Theory and Practice (Izd-vo Territoriya, Chernogolovka, 2001) pp. 333–353.

    Google Scholar 

  18. A. S. Rogachev and V. I. Ponomarev, in Self-Propagating High-Temperature Synthesis: Theory and Practice (Izd-vo Territoriya, Chenogolovka, 2001) pp. 94–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levashov, E.A., Larikhin, D.V., Shtansky, D.V. et al. Self-Propagating High-Temperature Synthesis of Functionally Graded PVD Targets with a Ceramic Working Layer of TiB2-TiN or Ti5Si3-TiN. Journal of Materials Synthesis and Processing 10, 319–330 (2002). https://doi.org/10.1023/A:1023881718671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023881718671

Navigation