Skip to main content
Log in

Sintering behavior and refining grains of high density tin doped indium oxide targets with low tin oxide content

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High density indium tin oxide (ITO) ceramic targets with low SnO2 content were prepared successfully by sintering co-precipitationally synthesized powders. The sintering behavior, properties and refining grains of the ITO targets were studied in normal pressure oxygen ambience. Higher sintering temperature promoted sintering densification, resulted in abnormal grain growth and decreased bending strength. By a two-step sintering method, the uniform and fine-grained microstructures were obtained. The sintered density of the ITO targets was further improved. Furthermore, the grain size was reduced, and the bending strength was also enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.I. Kim, S.H. Cho, S.R. Choi, M.C. Oh, J.H. Jang, P.K. Song, Thin Solid Films 517(14), 4061 (2009)

    Article  Google Scholar 

  2. J. Xu, Z. Yang, X. Zhang, H. Wang, H. Xu, J. Mater. Sci. Mater. Electron. 25, 1792 (2014)

    Article  Google Scholar 

  3. T. Minami, Semicond. Sci. Technol. 20, S35 (2005)

    Article  Google Scholar 

  4. G. Goncalves, V. Grasso, P. Barquinha, L. Pereira, E. Elamurugu, M. Brignone, R. Martins, V. Lambertini, E. Fortunato, Plasma Process. Polym. 8, 340 (2011)

    Article  Google Scholar 

  5. E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Aguas, I. Ferreira, M.E.V. Costa, M.H. Godinho, P.L. Almeida, J.P. Borges, R. Martins, Surf. Coat. Technol. 151, 247 (2002)

    Article  Google Scholar 

  6. C.H. Liu, X. Yu, Nanoscale Res. Lett. 6, 75 (2011)

    Article  Google Scholar 

  7. S.J. Wang, Y. Geng, Q. Zheng, J.K. Kim, Carbon 48, 1815 (2010)

    Article  Google Scholar 

  8. S. Parthiban, V. Gokulakrishnan, K. Ramamurthi, E. Elangovan, R. Martins, E. Fortunato, R. Ganesan, Sol. Energy Mater. Sol. Cells 93, 92 (2009)

    Article  Google Scholar 

  9. G.G. Untila, T.N. Kost, A.B. Chebotareva, M.A. Timofeyev, Semiconductors 46(7), 962 (2012)

    Article  Google Scholar 

  10. P.K. Biswas, A. Dea, K. Ortner, S. Korder, Mater. Lett. 58(10), 1540 (2004)

    Article  Google Scholar 

  11. H. Kostlin, R. Jost, W. Lems, Phys. Status Solidi A 29, 87 (1975)

    Article  Google Scholar 

  12. S.F. Tseng, W.T. Hsiao, K.C. Huang, D. Chiang, M.F. Chen, C.P. Chou, Appl. Surf. Sci. 257, 1487 (2010)

    Article  Google Scholar 

  13. J.O. Song, K.K. Kim, H. Kim, H.G. Hong, H. Na, T.Y. Seong, Electrochem. Solid State Lett. 10(9), H270 (2007)

    Article  Google Scholar 

  14. J. Hotovy, J. Hupkes, W. Bottler, E. Marins, L. Spiess, T. Kups, V. Smirnov, I. Hotovy, J. Kovac, Appl. Surf. Sci. 269, 81 (2013)

    Article  Google Scholar 

  15. A.E. Lozano, J.D. Abajo, J.G.D.L. Campa, C. Guillen, J. Herrero, M.T. Gutierrez, J. Appl. Polym. Sci. 103(6), 3491 (2007)

    Article  Google Scholar 

  16. T. Omata, M. Kita, H. Okada, S. Otsuka-Yao-Matsuo, N. Ono, H. Ikawa, Thin Solid Films 503, 22 (2006)

    Article  Google Scholar 

  17. P. Lippens, A. Segers, J. Haemrs, R. De Gryse, Thin Solid Films 317, 405 (1998)

    Article  Google Scholar 

  18. B.L. Gehman, S. Jonsson, T. Rudolph, M. Schere, M. Weigert, R. Werner, Thin Solid Films 220, 333 (1992)

    Article  Google Scholar 

  19. N. Neves, A. Lagoa, J. Calado, A.M. Botelho do Rego, E. Fortunato, R. Martinsb, I. Ferreira, J. Eur. Ceram. Soc. 34, 2325 (2014)

    Article  Google Scholar 

  20. K. Nakashima, Y. Kumahara, Vacuum 66, 221 (2002)

    Article  Google Scholar 

  21. S.H. Cho, Y.M. Kang, J.R. Lee, B.K. Ryu, P.K. Song, J. Korean Phys. Soc. 54(3), 1315 (2009)

    Article  Google Scholar 

  22. C.P. Udawatte, K. Yanagisawa, J. Solid State Chem. 154, 444 (2000)

    Article  Google Scholar 

  23. K. Iwasa, T. Isobe, M. Senna, Solid State Ion. 101, 71 (1997)

    Google Scholar 

  24. N. Nadaud, M. Nanot, P. Boch, J. Am. Ceram. Soc. 77(3), 843 (1994)

    Article  Google Scholar 

  25. G. Zhu, Z. Yang, L. Zhi, H. Yang, H. Xu, A. Yu, J. Am. Ceram. Soc. 93(9), 2511 (2010)

    Article  Google Scholar 

  26. C. Liu, J. Liu, Y. Wang, Rare Met. 30(2), 126 (2011)

    Article  Google Scholar 

  27. T.O.L. Sunde, M. Einarsrud, T. Grande, J. Eur. Ceram. Soc. 33(3), 565 (2013)

    Article  Google Scholar 

  28. K.Y. Kim, S.B. Park, Mater. Chem. Phys. 86, 210 (2004)

    Article  Google Scholar 

  29. S. Chen, C. Li, W. Xiong, L. Liu, H. Wang, Mater. Lett. 58, 294 (2004)

    Article  Google Scholar 

  30. Y. Zhang, H. Ago, J. Liu, M. Yumura, K. Uchida, S. Ohshima, S. Iijima, J. Zhu, X. Zhang, J. Cryst. Growth 264(1–3), 363 (2004)

    Article  Google Scholar 

  31. T. Kayukawa, H. Shigetani, M. Senna, J. Mater. Sci. Lett. 14, 252 (1995)

    Article  Google Scholar 

  32. S. Tang, J. Yao, J. Chen, J. Luo, J. Mater. Process. Technol. 137, 82 (2003)

    Article  Google Scholar 

  33. R.M. Hussein, O.I. Abd, Indian J. Mater. Sci. 2014, 1 (2014)

    Article  Google Scholar 

  34. I.W. Chen, X.H. Wang, Nature 404, 168 (2000)

    Article  Google Scholar 

  35. X.H. Wang, P.L. Chen, I.W. Chen, J. Am. Ceram. Soc. 89, 431 (2006)

    Article  Google Scholar 

  36. Z.R. Hesabi, M. Haghighatzadeh, M. Mazaheri, D. Galusek, S.K. Sadrnezhaad, J. Eur. Ceram. Soc. 29, 1371 (2009)

    Article  Google Scholar 

  37. M. Mazaheri, A.M. Zahedi, S.K. Sadrnezhaad, J. Am. Ceram. Soc. 91, 56 (2008)

    Article  Google Scholar 

  38. M. Mazaheri, M. Valefi, Z.R. Hesabi, S.K. Sadrnezhaad, Ceram. Int. 35, 13 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work is jointly supported by the National Natural Science Foundation of China (21176051), Guangxi Natural Science Foundation (2013GXNSFBA019234), Guangxi Key Laboratory of Information Material (1210908-204-Z, 131024-Z) and Guangxi Experiment Center of Information Science (YB1511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwen Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Yang, L., Wang, H. et al. Sintering behavior and refining grains of high density tin doped indium oxide targets with low tin oxide content. J Mater Sci: Mater Electron 27, 3298–3304 (2016). https://doi.org/10.1007/s10854-015-4158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4158-x

Keywords

Navigation