Skip to main content
Log in

Synthesis, Ferroelectric and Optical Properties of (Pb,Ca)TiO3 Thin Films by Soft Solution Processing

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Calcium modified lead titanate sol was synthesized using a soft solution processing, the so-called polymeric precursor method. In soft chemistry method, soluble precursors such as lead acetate trihydrate, calcium carbonate and titanium isopropoxide, as starting materials, were mixed in aqueous solution. Pb0.7Ca0.3TiO3 thin films were deposited on platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure, dielectric and optical properties of the thin films were investigated. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 299 and 0.065, respectively, for a thin film with 230 nm thickness annealed at 600°C for 2 h. The remanent polarization (2Pr) and coercive field (E c) were 32 μC/cm2 and 100 kV/cm, respectively. Transmission spectra were recorded and from them, refractive index, extinction coefficient, and band gap energy were calculated. Thin films exhibited good optical transmissivity, and had optical direct transitions. The present study confirms the validity of the DiDomenico model for the interband transition, with a single electronic oscillator at 6.858 eV. The optical dispersion behavior of PCT thin film was found to fit well the Sellmeir dispersion equation. The band gap energy of the thin film, annealed at 600°C, was 3.56 eV. The results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of PCT thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bhaskar, S.B. Majumder, P.S. Dobal, R.S. Katiyar, and S.B. Krupanidhi, J. Appl. Phys. 89, 5637 (2001).

    Google Scholar 

  2. F.M. Pontes, J.H.G. Rangel, E.R. Leite, E. Longo, J.A. Varela, E.B. Araújo, and J.A. Eiras, Thin Solid Films 366, 232 (2000).

    Google Scholar 

  3. C.R. Cho, Mater. Sci. Eng. B64, 113 (1999).

    Google Scholar 

  4. D. Bao, X. Yao, and L. Zhang, Appl. Phys. Lett. 76, 2779 (2000).

    Google Scholar 

  5. A. Seifert, P. Muralt, and N. Setter, Appl. Phys. Lett. 72, 2409 (1998).

    Google Scholar 

  6. S.W. Chung, Y.I. Kim, H.L. Park, and W.J. Lee, J. Mater. Sci. in Electronics 9, 383 (1998).

    Google Scholar 

  7. T. Matsuzaki and M. Funakubo, J. Appl. Phys. 86, 4559 (1998).

    Google Scholar 

  8. T. Yu, Y.F. Chen, Y.Y. Zhu, Z.G. Liu, N.B. Ming, and X.S. Wu, Appl. Surf. Sci. 138/139, 609 (1999).

    Google Scholar 

  9. T. Hata, S. Kawagoe, W. Zhang, K. Sasaki, and Y. Yoshioka, Vacuum 51, 671 (1998).

    Google Scholar 

  10. J.C. Jiang, Y.Q. Pan, W. Tian, C.D. Theis, and D.G. Schlom, Appl. Phys. Lett. 74, 2851 (1999).

    Google Scholar 

  11. P. Verardi, F. Cracium, M. Dinescu, and C. Gerardi, Thin Solid Films 318, 265 (1998).

    Google Scholar 

  12. E. Yamaka, H. Watanaba, H. Kimura, H. Kanaya, and H. Ohkuma, J. Vac. Sci. Technol. A6, 2921 (1988).

    Google Scholar 

  13. M.J. Martín, C. Zaldo, and J. Mendiola, Appl. Surf. Sci. 96–98, 823 (1996).

    Google Scholar 

  14. R. Jimenez, M.L. Calzada, and J. Mendiola, Thin Solid Films 348, 253 (1999).

    Google Scholar 

  15. X.G. Tang, Q.F. Zhou, and J.X. Zhang, Thin Solid Films 375, 159 (2000).

    Google Scholar 

  16. H. Li, X. Tang, Q. Li, Y. Liu, Z. Tang, Y. Zhang, and D. Mo, Solid State Comm. 114, 347 (2000).

    Google Scholar 

  17. G. Teowee, K.C. McCarthy, T.P. Alexander, T.J. Bukowski, and D.R. Ublmann, in Proc. 10th IEEE Int. Symp. Appl. Ferro., edited by B.M. Kulwicki, A. Amin, and A. Safari (IEEE Press, East Brunswick, NJ, 1999), p. 487.

    Google Scholar 

  18. M. Kakihana and M. Yoshimura, Bull. Chem. Soc. Jpn. 72, 1427 (1999).

    Google Scholar 

  19. F.M. Pontes, E. Longo, E.R. Leite, and J.A. Varela, Thin Solid Films 386, 91 (2001).

    Google Scholar 

  20. F.M. Pontes, E.B. Araújo, E.R. Leite, J.A. Eiras, E. Longo, and J.A. Varela, Appl. Phys. Lett. 76, 2433 (2000).

    Google Scholar 

  21. E.R. Leite, C.M.G. Campos, E. Longo, and J.A. Varela, Ceram. Int. 21, 143 (1995).

    Google Scholar 

  22. D. Bao, X. Wu, L. Zhang, and X. Yao, Thin Solid Films 350, 30 (1999).

    Google Scholar 

  23. M.J. Martín, J. Mendiola, and C. Zaldo, J. Am. Ceram. Soc. 81, 2542 (1998).

    Google Scholar 

  24. J. Mendiola, B. Jiménez, C. Alemany, L. Pardo, and L. Del Olmo, Ferroelectrics 94, 183 (1989).

    Google Scholar 

  25. J.J. Shyu and K.L. Mo, J. Mat. Sci. Lett. 15, 620 (1996).

    Google Scholar 

  26. A. Tsuzuki, H. Murakami, K. Kani, K. Watari, and Y. Torri, J. Mater. Sci. Lett. 10, 125 (1991).

    Google Scholar 

  27. S. Chewasatn and S.J. Milne, J. Mat. Sci. 32, 575 (1997).

    Google Scholar 

  28. H. Maiwa and N. Ichinose, Jpn. J. Appl. Phys. 36, 5825 (1997).

    Google Scholar 

  29. C.M. Wang, Y.T. Huang, Y.C. Chen, M.S. Lee, and M.C. Kao, Jpn. J. Appl. Phys. 39, 3579 (2000).

    Google Scholar 

  30. T.S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).

    Google Scholar 

  31. L.J. Meng and M.P. Santos, Thin Solid Films 226, 22 (1993).

    Google Scholar 

  32. J. Aarik, A. Aidla, A.A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films 305, 270 (1997).

    Google Scholar 

  33. N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979).

    Google Scholar 

  34. J. Tauc and A. Menth, J. Non-Cryst. Solids 8/9, 569 (1972).

    Google Scholar 

  35. J.C. Manifacer, J. Gasiot, and J.P. Fillard, J. Phys. E9, 1002 (1976).

    Google Scholar 

  36. M. DiDomenico and S.N. Wenple, J. Appl. Phys. 40, 720 (1969).

    Google Scholar 

  37. M. Wohlecke, V. Marrello, and A. Onton, J. Appl. Phys. 48, 1748 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontes, F., Pontes, D., Leite, E. et al. Synthesis, Ferroelectric and Optical Properties of (Pb,Ca)TiO3 Thin Films by Soft Solution Processing. Journal of Sol-Gel Science and Technology 27, 137–147 (2003). https://doi.org/10.1023/A:1023742315962

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023742315962

Navigation