Skip to main content
Log in

Differential Expression of Connexin43 in Foetal, Adult and Tumour-associated Human Brain Endothelial Cells

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Connexin43 (Cx43), the main protein constituting the gap junctions between astrocytes, has previously been demonstrated in endothelial cells of somatic vessels where the intercellular coupling that it provides plays a role in endothelial proliferation and migration. In this study, Cx43 expression was analysed in human brain microvascular endothelial cells of the cortical plate of 18-week foetal telencephalon, in adult cerebral cortex and glioma (astrocytomas). The study was carried out by immunocytochemistry utilizing a Cx43 monoclonal antibody and a polyclonal antibody anti-GLUT1 (glucose transporter isoform 1) to identify the endothelial cells and to localize Cx43. Endothelial Cx43 is differently expressed in the cortical plate, cerebral cortex and astrocytoma. Within the cortical plate and tumour, Cx43 is highly expressed in microvascular endothelial cells whereas it is virtually absent in the cerebral cortex microvessels. The high expression of the gap junction protein in developing brain, as well as in brain tumours, may be related to the growth status of the microvessels during brain and tumour angiogenesis. The lack of endothelial Cx43 in the cerebral cortex is in agreement with the characteristics of the mature brain endothelial cells that are sealed by tight junctions. In conclusion, the results indicate that endothelial Cx43 expression is developmentally regulated in the normal human brain and suggest that it is controlled by the microenvironment in both normal and tumour-related conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allt G, Lawrenson JG (2001) Pericytes: Cell biology and pathology. Cells Tissues Organs 169: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Aronica E, Gorter JA, Jansen GH, Leenstra S, Yankaya B, Troost D (2001) Expression of connexin 43 and connexin 32 gap-junction proteins in epilepsy-associated brain tumours and in the perilesional epileptic cortex. Acta Neuropathol (Berl.) 101: 449–459.

    CAS  PubMed  Google Scholar 

  • Bertossi M, Virgintino D, Maiorano E, Occhiogrosso M, Roncali L (1997) Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct Pathol 21: 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Bertossi M, Virgintino D, Errede M, Roncali L (1999) Immunohistochemical and ultrastructural characterization of cortical plate microvasculature in the human fetus telencephalon. Microvasc Res 58: 49–61.

    Article  CAS  PubMed  Google Scholar 

  • Breier G, Risau W (1996) Angiogenesis in the developing brain and in brain tumors. Forum 6: 362–376.

    Google Scholar 

  • Cai J, Jiang WG, Mansel RE (1998) Gap junctional communication and the tyrosine phosphorylation of connexin 43 in interaction between breast cancer and endothelial cells. Int J Mol Med 1: 273–278.

    CAS  PubMed  Google Scholar 

  • Chandross KJ (1998) Nerve injury and inflammatory cytokines modulate gap junctions in the peripheral nervous system. Glia 24: 21–31.

    Google Scholar 

  • Damert A, Machein M, Breier G, Fujita MQ, Hanahan D, Risau W, Plate KH (1997) Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 57: 3860–3864.

    CAS  PubMed  Google Scholar 

  • DePaola N, Davies PF, Pritchard WF Jr, Florez L, Harbeck N, Polacek DC (1999) Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci USA 96: 3154–3159.

    Article  CAS  PubMed  Google Scholar 

  • Dermietzel R, Spray DC (1998) From neuro-glue ('Nervenkitt') to glia: A prologue. Glia 24: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Dermietzel R, Traub O, Hwang TK, Beyer E, Bennett MV, Spray DC, Willecke K (1989) Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci USA 86: 10148–10152.

    Article  CAS  PubMed  Google Scholar 

  • Duffy HS, John GR, Lee SC, Brosnan CF, Spray DC (2000) Reciprocal regulation of the junctional proteins claudin-1 and connexin43 by Interleukin-1? in primary human fetal astrocytes. J Neurosci 20: RC 114.

  • Fróes MM, Campos De Carvalho AC (1998) Gap junction-mediated loops of neuronal-glial interactions. Glia 24: 97–107.

    Article  PubMed  Google Scholar 

  • Fujimoto K (1995) Pericyte-endothelial gap junctions in developing rat cerebral capillaries: A fine structural study. Anat Rec 242: 562–565.

    Article  CAS  PubMed  Google Scholar 

  • Gabriels JE, Paul DL (1998) Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 83: 636–643.

    CAS  PubMed  Google Scholar 

  • Haefliger JA, Demotz S, Braissant O, Suter E, Waeber B, Nicod P, Meda P (2001) Connexins 40 and 43 are differentially regulated within the kidneys of rats with renovascular hypertension. Kidney Int 60: 190–201.

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KK, D'Amore PA(1997) Control of angiogenesis by the pericyte: Molecular mechanisms and significance. EXS 79: 419–428.

    CAS  PubMed  Google Scholar 

  • Huang RP, Hossain MZ, Sehgal A, Boynton AL (1999) Reduced connexin43 expression in high-grade human brain glioma cells. J Surg Oncol 70: 21–24.

    Article  CAS  PubMed  Google Scholar 

  • Inoguchi T, Yu HY, Imamura M, Kakimoto M, Kuroki T, Maruyama T, Nawata H (2001) Altered gap junction activity in cardiovascular tissues of diabetes. Med Electron Microsc 34: 86–91.

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Morita I, Nihei Z, Mishima Y, Murota S (1997) Effect of IL-6 on tumor cell invasion of vascular endothelial monolayers. Surg Today 27: 534–541.

    Article  CAS  PubMed  Google Scholar 

  • Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20: 57–76.

    Article  CAS  PubMed  Google Scholar 

  • Ko YS, Yeh HI, Rothery S, Dupont E, Coppen SR, Severs NJ (1999) Connexin make-up of endothelial gap junctions in the rat pulmonary artery as revealed by immunoconfocal microscopy and triplelabel immunogold electron microscopy. J Histochem Cytochem 47: 683–692.

    CAS  PubMed  Google Scholar 

  • Kwak BR, Mulhaupt F, Veillard N, Gros DB, Mach F (2002) Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 22: 225–230.

    Article  CAS  PubMed  Google Scholar 

  • Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol (Berl.) 100: 323–331.

    Article  CAS  PubMed  Google Scholar 

  • Little TL, Beyer EC, Duling BR (1995) Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol 268: 729–739.

    Google Scholar 

  • McDonough WS, Johansson A, Joffee H, Giese A, Berens ME (1999) Gap junction intercellular communication in gliomas is inversely related to cell motility. Int J Dev Neurosci 17: 601–611.

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah B, Thomaidou D, Evans WH, Parnavelas JG (1996) Gap junctions in the adult cerebral cortex: Regional differences in their distribution and cellular expression of connexins. J Comp Neurol 376: 326–342.

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah B, Jones AM, Evans WH, Parnavelas JG (1997) Differential expression of connexins during neocortical development and neuronal circuit formation. J Neurosci 17: 3096–3111.

    CAS  PubMed  Google Scholar 

  • Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32: 29–44.

    Article  CAS  PubMed  Google Scholar 

  • Norman MG, O'Kusky JR (1986) The growth and development of microvasculature in human cerebral cortex. J Neuropathol Exp Neurol 45: 222–232.

    CAS  PubMed  Google Scholar 

  • Pardridge WM (1999) Blood-brain barrier biology and methodology. J Neurovirol 5: 556–569.

    Article  CAS  PubMed  Google Scholar 

  • Pardrige WM, Boado RJ, Farrell CR (1990) Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. J Biol Chem 265: 18035–18040.

    Google Scholar 

  • Pepper MS, Meda P (1992) Basic fibroblast growth factor increases junctional communication and connexin 43 expression in microvascular endothelial cells. J Cell Physiol 153: 196–205.

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F (2002) Endothelial cell heterogeneity and organ specificity. J Hematother Stem Cell Res 11: 81–90.

    Article  PubMed  Google Scholar 

  • Roncali L (2001) Astrocyte and barrier-provided microvasculature in the developing brain. In: De Vellis J, ed. Neuroglia in the Aging Brain. Totowa: Humana Press, pp. 321–335.

    Chapter  Google Scholar 

  • Rozental R, Giaume C, Spray DC (2000) Gap junctions in the nervous system. Brain Res Brain Res Rev 32: 11–15.

    CAS  PubMed  Google Scholar 

  • Soroceanu L, Manning TJ Jr, Sontheimer H (2001) Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33: 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Suarez S, Ballmer-Hofer K (2001) VEGF transiently disrupts gap junctional communication in endothelial cells. J Cell Sci 114: 1229–1235.

    CAS  PubMed  Google Scholar 

  • Traub O, Hertlein B, Kasper M, Eckert R, Krisciukaitis A, Hulser D, Willecke K (1998) Characterization of the gap junction protein connexin37 in murine endothelium, respiratory epithelium, and after transfection in human HeLa cells. Eur J Cell Biol 77: 313–322.

    CAS  PubMed  Google Scholar 

  • van Kempen MJ, Jongsma HJ (1999) Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol 112: 479–486.

    Article  CAS  PubMed  Google Scholar 

  • van Rijen HV, van Kempen MJ, Postma S, Jongsma HJ (1998) Tumor necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine 10: 258–264.

    Article  CAS  PubMed  Google Scholar 

  • Virgintino D, Robertson D, Benagiano V, Errede M, Bertossi M, Ambrosi G, Roncali L (2000) Immunogold cytochemistry of the blood-brain barrier glucose transporter GLUT1 and endogenous albumin in the developing human brain. Dev Brain Res 123: 95–101.

    Article  CAS  Google Scholar 

  • Virgintino D, Robertson D, Errede M, Benagiano V, Bertossi M, Ambrosi G, Roncali L (2001) Expression of the gap junction protein connexin43 in human telencephalon microvessels. Microvasc Res 62: 435–439.

    Article  CAS  PubMed  Google Scholar 

  • Wijsman JA, Shivers RR (1998) Immortalized mouse brain endothelial cells are ultrastructurally similar to endothelial cells and respond to astrocyte-conditioned medium. In Vitro Cell Dev Biol Anim 34: 777–784.

    Article  CAS  PubMed  Google Scholar 

  • Yeh HI, Rothery S, Dupont E, Coppen SR, Severs NJ (1998) Individual gap junction plaques contain multiple connexins in arterial endothelium. Circ Res 83: 1248–1263.

    CAS  PubMed  Google Scholar 

  • Yeh HI, Chang HM, Lu WW, Lee YN, Ko YS, Severs NJ, Tsai CH (2000a) Age-related alteration of gap junction distribution and connexin expression in rat aortic endothelium. J Histochem Cytochem 48: 1377–1389.

    CAS  PubMed  Google Scholar 

  • Yeh HI, Lai YJ, Chang HM, Ko YS, Severs NJ, Tsai CH (2000b) Multiple connexin expression in regenerating arterial endothelial gap junctions. Arterioscler Thromb Vasc Biol 20: 1753–1762.

    CAS  PubMed  Google Scholar 

  • Zahs KR (1998) Heterotypic coupling between glial cells of the mammalian central nervous system. Glia 24: 85–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Errede, M., Benagiano, V., Girolamo, F. et al. Differential Expression of Connexin43 in Foetal, Adult and Tumour-associated Human Brain Endothelial Cells. Histochem J 34, 265–271 (2002). https://doi.org/10.1023/A:1023344106815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023344106815

Keywords

Navigation