Skip to main content
Log in

Genetic diversity in Sorghum bicolor(L.) Moench accessions from different ecogeographical regions in Malawi assessed with RAPDs

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Genetic variation within and among several Sorghum populations from different agroecological zones in Malawi were investigated using random amplified polymorphic markers (RAPDs). DNA samples from individual plants were analyzed using 35 oligonucleotides of random sequence. Twenty five of these primers allowed amplifications of random polymorphic (RAPD) loci. Overall, 52% of the scored loci were polymorphic. Every accession was genetically distinct. The analysis of molecular variance revealed that the within-region (among accessions) variations accounted for 96.43% of the total molecular variance. Observed variations in allelic frequency was not related to agroecological differences. The degree of band sharing was used to evaluate genetic distance between accessions and to construct a phylogenetic tree. Further analysis revealed that the sorghum accessions analyzed were genetically close despite considerable phenotypic diversity within and among them. It is suggested that all the sorghum landraces currently available in Malawi should be conserved both ex situ and in situ to maintain the current level of genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahnert D., Lee M., Austin D.F., Livini C., Openshaw S.J., Smith J.S.C. et al. 1996. Genetic diversity among elite sorghum inbred lines assessed with DNA markers and pedigree information. Crop Sci. 36: 1385–1392.

    Google Scholar 

  • Aldrich P.R. and Doebley J. 1992. Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wild Sorghum bicolor. Theor. Appl. Genet. 85: 293–302.

    Google Scholar 

  • Anonymous 1996. Lost crops of Africa: grains, National Academy species of Sciences. National Academy Press, USA. vol 1.

  • Armstrong J.S., Gibbs A.J., Peakall R. and Weiller G. 1994. The RAPDistance Package. Http://life.anu.edu.au /molecular/software/rapd.html.

  • Avise J.C. 1994. Molecular markers, natural history and evolution. Chapman and Hall, New York.

    Google Scholar 

  • Brown A.M., Hopkins M., Mitchell S.E., Senior M.L., Wang T.Y., Duncan R.R. et al. 1996. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 93: 190–198.

    Google Scholar 

  • Xu J.X., Cui F.W., Magill C.W., Schertz K.F. and Hart G.E. 1995. RFLP-;based assay of Sorghum bicolor (L.) Moench genetic diversity. heor. Appl. Genet. 90: 787–796.

    Google Scholar 

  • Crow J.F. 1986. Basic concepts in population, quantitative and evolutionary genetics.W. H. Freeman and Company, New York.

    Google Scholar 

  • Dahlberg J.A., Hash T., Kresovich S., Maunder A.B. and Gilbert M. 1997. Sorghum and pearl millet genetic resources utilisation Proceedings of the International Conference on Genetic Improvement of Sorghum & Millet. SICNA, Lubbock, TX, pp. 42–54.

    Google Scholar 

  • Deu M., Gonzalez-;De-;Leon D., Glaszmann J.C., Degremont I., Chantereau J., Lanaud C. et al. 1994. RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor. Appl. Genet. 88: 838–844.

    Google Scholar 

  • Doggett H. 1988. Sorghum. Longman, London, UK.

  • Duncan R.R., Bramel-;Cox P.J. and Miller F.R. 1991. Contributions of introduced sorghum germplasm to hybrid development in the USA. In: Shands H.L. and Weisner L.E. (eds), Use of plant unintroduction in cultivar development. CSSA Spec. Publ. 17. CSSA, Madison, WI, pp. 69–102.

    Google Scholar 

  • Eberhart S.A., Bramel-;Cox P.J. and Prasada Rao K.E. 1997. Prerequired serving genetic resources. In: Proceedings of the International Conference on Genetic Improvement of Sorghum and Millet. SICNA, Lubbock, TX, pp. 25–41.

    Google Scholar 

  • Hartl D.L. 1988. A primer of population genetics. 2nd edn. Sinauer Assoc. Inc., Sunderland, M.A.

    Google Scholar 

  • Excoffier L., Smouse P.E. and Quattro J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction sites. Genetics 131: 479–491.

    Google Scholar 

  • Hedrick P.W. 1986. Genetic polymorphism in heterogeneous environments: A decade later. Ann. Rev. Ecol. Syst. 17: 535–566.

    Google Scholar 

  • Loveless M.D. and Hamrick J.L. 1984. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15: 65–95.

    Google Scholar 

  • Maniatis T., Fitsch E.F. and Sambrook J. 1989. Molecular Cloning: A laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory, Long Island, NY. vol I–III.

    Google Scholar 

  • Menkir A., Goldsbrough P. and Ejeta G. 1997. RAPD based assessment of genetic diversity in cultivated races of sorghum. Crop Sci. 37: 564–569.

    Google Scholar 

  • Morden W.C., Doebley J. and Schertz K.F. 1989. Allozyme variation in old world races of Sorghum bicolor (Poaceae). Am. J. Bot. 76: 245–255.

    Google Scholar 

  • Nkongolo K.K. 1999a. RAPD variations among pure and hybrid populations of Picea mariana, P. rubens andP. glauca, and cytogenetic stability of Picea hybrids: identification of speciesof specific RAPD markers. Pl. Syst. Evol. 215: 229–239.

    Google Scholar 

  • Nkongolo K.K. 1999b. RAPD and cytological analyses of Picea spp. from different provenances: genomic relationships among taxa. Hereditas 130: 137–144.

    Google Scholar 

  • Ollitrault P. 1987. Evaluation genetique des sorghos cultives (Sor-;ghum bicolor L. Moench) par l'analyse conjointe des diversities enzymatiques et morphophysiolgiques, Universite de Paris.

  • Saitou N. and Nei M. 1987. The neigbor-;joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  • Tao Y., Manners J.M., Ludlow M.M. and Henzell R.F. 1993. DNA polymorphism in grain sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 86: 679–688.

    Google Scholar 

  • Teshome A., Fahrig L., Torrance J.K., Lambert J.D., Arnason T.J. and Baum B.R. 1999. Maintenance of Sorghum (Sorghum bicolor, Poaceae) landrace diversity by farmers selection in Ethiopia. Econ. Bot. 53: 79–88.

    Google Scholar 

  • Vierling R.A., Xiang Z., Joshi C.P., Gilbert M.L. and Nguyen H.T. 1994. Genetic diversity among elite sorghum lines revealed by restriction fragment length polymorphism and random amplified polymorphic DNAs. Theor. Appl. Genet. 87: 816–820.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nkongolo, K., Nsapato, L. Genetic diversity in Sorghum bicolor(L.) Moench accessions from different ecogeographical regions in Malawi assessed with RAPDs. Genetic Resources and Crop Evolution 50, 149–156 (2003). https://doi.org/10.1023/A:1022996211164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022996211164

Navigation