Skip to main content
Log in

Excitations of Liquid 4He in Disorder

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The dynamic structure factor S(q, ω) for a model of superfluid 4 He in disorder is evaluated using Path Integral Monte Carlo and Maximum Entropy methods. Disorder is represented by randomly distributed static impurities interacting with the 4 He atoms via a simple attractive potential. The potential is parametrized to yield different values of the variance and correlation length of the resulting disordering environment. New weight in S(q, ω) at low ω (i.e., low energy excitations) is induced by disorder, as predicted in some previous calculations, and S(q, ω) is broadened. Assuming that S(q, ω) in disorder is dominated by a single peak, just as in the pure superfluid, the data suggest that the peak position is shifted by the disorder from the bulk value with a unique q dependence. The static structure factor S(q) is reduced at all wave vectors with increased impurity concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Thouless, Phys. Rep. 13C, 93 (1974).

    Google Scholar 

  2. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 546 (1989).

    Google Scholar 

  3. M. Ma, P. Nisamaneephong, and L. Zhang, J. Low Temp. Phys. 93, 957 (1993).

    Google Scholar 

  4. M. H. W. Chan, K. I. Blum, S. Q. Murphy, G. K. S. Wong, and J. D. Reppy, Phys. Rev. Lett. 61, 1950 (1988).

    Google Scholar 

  5. M. Larson, N. Mulders, and G. Ahlers, Phys. Rev. Lett. 68, 3896 (1992).

    Google Scholar 

  6. J. D. Reppy, J. Low Temp. Phys. 87, 205 (1992).

    Google Scholar 

  7. A. I. Larkin, Zh. Eksp. Teor. Fiz. 58, 1466 (1970) [Sov. Phys. JETP 31, 784 (1970)].

    Google Scholar 

  8. D. R. Nelson and K. S. Seung, Phys. Rev. B 39, 9153 (1989).

    Google Scholar 

  9. D. A. Huse and K. S. Seung, Phys. Rev. B 42, 1059 (1990).

    Google Scholar 

  10. D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991).

    Google Scholar 

  11. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Google Scholar 

  12. M. G. Forrester et al., Phys. Rev. B 41, 8749 (1990).

    Google Scholar 

  13. M. C. Cha et al., Phys. Rev. B 44, 6883 (1991).

    Google Scholar 

  14. A. van Otterlo et al., Phys. Rev. B 48, 3316 (1993).

    Google Scholar 

  15. S. Bhattacharya and M. J. Higgins, Phys. Rev. Lett. 70, 2617 (1993); Phys. Rev. B 49, 10005 (1994).

    Google Scholar 

  16. L. Balents and M. P. A. Fisher, Phys. Rev. Lett. 75, 4270 (1995).

    Google Scholar 

  17. M. C. Cha and H. A. Fertig, Phys. Rev. B 50, 14368 (1994).

    Google Scholar 

  18. R. Seshadri and R. M. Westervelt, Phys. Rev. B 46, 5142 (1992); 46, 5150 (1992).

    Google Scholar 

  19. A. A. Middleton and D. S. Fisher, Phys. Rev. B 47, 3593 (1993).

    Google Scholar 

  20. D. K. K. Lee and J. M. F. Gunn, J. Low Temp. Phys. 89, 101 (1992) and references therein.

    Google Scholar 

  21. L. Zhang, Phys. Rev. B 47, 14364 (1993).

    Google Scholar 

  22. W. Krauth, N. Trivedi, and D. M. Ceperley, Phys. Rev. Lett. 67, 2307 (1991).

    Google Scholar 

  23. M. Makivic, N. Trivedi, and S. Ullah, Phys. Rev. Lett. 71, 2307 (1993).

    Google Scholar 

  24. M. Boninsegni and D. M. Ceperley, J. Low Temp. Phys. 104, 336 (1996).

    Google Scholar 

  25. J. de Kinder, G. Coddens, and R. Millet, Z. Phys. B Cond. Mat. 95, 511 (1994); G. Coddens, J. de Kinder, and R. Millet, J. Non-Cryst. Sol. 188, 41 (1995).

    Google Scholar 

  26. P. E. Sokol, M. R. Gibbs, and M. A. Adams, Nature 379, 616 (1996); M. R. Gibbs, P. E. Sokol, W. G. Stirling, R. T. Azuah, and M. A. Adams, J. Low Temp. Phys. 107, 33 (1997); R. M. Dimeo, P. E. Sokol, D. W. Brown, C. R. Anderson, W. G. Stirling, M. A. Adams, S. H. Lee, C. Rutiser, and S. Komarneni, Phys. Rev. Lett. 79, 5274 (1997).

    Google Scholar 

  27. O. Plantevin et al. (1997), unpublished.

  28. R. A. Aziz, M. J. Slaman, A. Koide, A. R. Allnatt, and W. J. Meath, Mol. Phys. 77, 321 (1992).

    Google Scholar 

  29. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).

    Google Scholar 

  30. See, for instance, I. M. Lifshits, S. A. Gredeskul, and L. A. Pasteur, Introduction to the Theory of Disordered Systems, John Wiley & Sons, New York (1988).

    Google Scholar 

  31. Because of the use of periodic boundary conditions, C(r) features a spatial periodicity L equal to the size of the replicated simulation cell. In this study, therefore, we restricted ourselves to values of the correlation length of the disordering potential less than L/2.

  32. M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).

    Google Scholar 

  33. H. N. Robkoff and R. B. Hallock, Phys. Rev. B 25, 1572 (1982).

    Google Scholar 

  34. E. C. Svensson, V. F. Sears, A. D. B. Woods, and P. Martel, Phys. Rev. B 21 3638 (1989).

    Google Scholar 

  35. H. R. Glyde, Excitations in Liquid and Solid Helium, Oxford University Press, Oxford (1994).

    Google Scholar 

  36. R. J. Donnelly, J. A. Donnelly, and R. N. Hills, J. Low Temp. Phys. 44, 471 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boninsegni, M., Glyde, H.R. Excitations of Liquid 4He in Disorder. Journal of Low Temperature Physics 112, 251–264 (1998). https://doi.org/10.1023/A:1022641900623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022641900623

Keywords

Navigation