Skip to main content
Log in

Thermal Radiative Properties and Temperature Measurement from Turbine Coatings

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Recent studies have displayed the spectral radiative properties of ceramic thermal barrier coatings which are finding applications in high performance turbine engines. As a function of temperature, a region in the long wavelength infrared spectrum exhibits properties which will minimize the classical errors associated with temperature measurement by radiometric detection. Hollow sapphire waveguides transmit the portion of the long wavelength infrared spectrum which is optimum for radiometric temperature measurement from these materials, while the physical properties of the sapphire can withstand the combustion conditions within the engine. A prototype long wavelength infrared radiation thermometer was constructed to obtain surface temperature measurements from coated turbine blades subjected to high temperature combustion conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. A. Webb and W. P. Parks, presentation at Air and Waste Management Association Annual Meeting, Cincinnati, OH (June 19–24, 1994), Conf. 940632-21.

  2. R. Vanzetti and A. C. Traub, in Theory and Practice of Radiation Thermometry, D. P. DeWitt and G. P. Nutter, eds. (Wiley, New York, 1988), Chap. 11.

    Google Scholar 

  3. A. S. Bonanno, M. A. Serio, and J. R. Markham, in Proceedings of the NASA Remote Temperature Sensing Workshop, NASA Lewis Research Center, NASA Conf. Publ. 10167 (Oct. 27–28, 1994).

  4. W. H. Atkinson and M. E. Cyr, in Proceedings of the 3rd Annual HITEMP Review, NASA Conf. Publ., 10051 (1990).

  5. E. Suarez, in Proceedings of the NASA Remote Temperature Sensing Workshop, NASA Lewis Research Center, NASA Conf. Publ. 10167 (Oct. 27–28, 1994).

  6. J. A. Harrington and C. Gregory, Opt. Lett. 15:541 (1990).

    Google Scholar 

  7. S. J. Saggese, J. A. Harrington, and G. H. Sigel, Jr., Opt. Lett. 16:27 (1991).

    Google Scholar 

  8. L. S. Rothman, R. Gamache, R. Tipping, C. Rinsland, M. Smith, D. Benner, V. Devi Malathy, J. M. Flaud, C. Camry-Reyret, A. Perrin, A. Goldman, S. Massie, L. Brown, and R. J. Toth, Quant. Spectrosc. Radiat. Transfer 48:469 (1992).

    Article  Google Scholar 

  9. J. R. Markham, K. Kinsella, R. M. Carangelo, C. R. Brouillette, M. D. Carangelo, P. E. Best, and P. R. Solomon, Rev. Sci. Instrum. 64:2515 (1993).

    Article  Google Scholar 

  10. P. W. Morrison, Jr., P. R. Solomon, M. A. Serio, R. M. Carangelo, and J. R. Markham, Sensors 8(12):32 (1991); 8(13):26 (1991).

    Google Scholar 

  11. J. R. Markham, W. W. Smith, J. R. Haigis, M. D. Carangelo, J. E. Cosgrove, K. Kinsella, P. R. Solomon, P. E. Best, A. Lewandowski, C. E. Bingham, and J. R. Pitts, ASME J. Solar Energy Eng. 118:20 (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markham, J.R., Kinsella, K. Thermal Radiative Properties and Temperature Measurement from Turbine Coatings. International Journal of Thermophysics 19, 537–545 (1998). https://doi.org/10.1023/A:1022581931516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022581931516

Navigation