Skip to main content
Log in

Measurements of gas temperatures at 100 kHz within the annulus of a rotating detonation engine

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Cycle-resolved measurements of H2O temperatures and number densities taken within the detonation channel of a hydrogen—air rotating detonation engine (RDE) at a 100 kHz repetition rate using laser absorption spectroscopy are presented. The laser source used is an MEMS-tunable Vertical-Cavity Surface Emitting laser which scans from 1330 to 1360 nm. Optical access into and out of the RDE is achieved using a dual-core fiber optic. Light is pitched into the RDE through a sapphire window via a single-mode core, retroreflected off the mirror-polished inner radius of the RDE annulus, and collected with the multi-mode fiber core. The resulting absorption spectra are used to determine gas temperatures as a function of time. These measurements allow characterization of the transient-temperature response of the RDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Kailasanath, AIAA J 38, 1698 (2000)

    Article  ADS  Google Scholar 

  2. D.A. Schwer, K. Kailasanath, AIAA Pap 581, 2011 (2011)

    Google Scholar 

  3. F. K. Lu, E. M. Braun, L. Massa, and D. R. Wilson, in 47th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. (2011).

  4. S. Sanders, D. Mattison, L. Ma, J. Jeffries, R. Hanson, Opt. Express 10, 505 (2002)

    Article  ADS  Google Scholar 

  5. S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 587 (2000)

    Article  Google Scholar 

  6. D.W. Mattison, C.M. Brophy, S.T. Sanders, L. Ma, K.M. Hinckley, J.B. Jeffries, R.K. Hanson, J. Propuls. Power 19, 568 (2003).

    Article  Google Scholar 

  7. A.W. Caswell, S. Roy, X. An, S.T. Sanders, F.R. Schauer, J.R. Gord, Appl. Opt. 52, 2893 (2013).

    Article  ADS  Google Scholar 

  8. C. McGahan, B. Tom, A. Caswell, J. Gord, F. Schauer, and J. Hoke, in 52nd AIAA Aerosp. Sci. Meet. Natl. Harb. MD, AIAA-2014-0391 (2014).

  9. C.S. Goldenstein, C.A. Almodóvar, J.B. Jeffries, R.K. Hanson, C.M. Brophy, Meas. Sci. Technol. 25, 105104 (2014)

    Article  ADS  Google Scholar 

  10. M.S. Wu, E.C. Vail, G.S. Li, W. Yuen, C.J. Chang-Hasnain, Electron. Lett. 31, 1671 (1995).

    Article  Google Scholar 

  11. M.S. Wu, E.C. Vail, G.S. Li, W. Yuen, C.J. Chang-Hasnain, Photonics Technol. Lett. IEEE 8, 98 (1996).

    Article  ADS  Google Scholar 

  12. B.A. Stein, V. Jayaraman, J.Y. Jiang, A. Cable, S.T. Sanders, Appl. Phys. B 108, 721 (2012).

    Article  ADS  Google Scholar 

  13. V. Jayaraman, B. Potsaid, J. Jiang, G.D. Cole, M.E. Robertson, C.B. Burgner, D.D. John, I. Grulkowski, W. Choi, T.H. Tsai, and others, in SPIE Microtechnologies (2013), p. 87630H–87630 H.

  14. T. Kraetschmer, D. Dagel, S.T. Sanders, Opt. Lett. 33, 738 (2008)

    Article  ADS  Google Scholar 

  15. D.S. Baer, M.E. Newfield, N. Gopaul, R.K. Hanson, Opt. Lett. 19, 1900 (1994)

    Article  ADS  Google Scholar 

  16. L.A. Kranendonk, X. An, A.W. Caswell, R.E. Herold, S.T. Sanders, R. Huber, J.G. Fujimoto, Y. Okura, Y. Urata, Opt. Express 15, 15115 (2007)

    Article  ADS  Google Scholar 

  17. J. C. Shank, P.I. King, J. Karnesky, F. Schauer, J.L. Hoke, in 50th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo. AIAA Pap. (2012).

  18. A. Naples, J. Hoke, J. Karnesky, and F. Schauer, in 51st AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo. AIAA Pap. (2013).

  19. J.M. Whitney, K. Takami, S.T. Sanders, Y. Okura, Sens. J. IEEE 11, 3295 (2011)

    Article  Google Scholar 

  20. L.A. Kranendonk, A.W. Caswell, S.T. Sanders, Appl. Opt. 46, 4117 (2007).

    Article  ADS  Google Scholar 

  21. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013).

    Article  ADS  Google Scholar 

  22. G. Schulze, A. Jirasek, M.M.L. Yu, A. Lim, R.F.B. Turner, M.W. Blades, Appl. Spectrosc. 59, 545 (2005).

    Article  ADS  Google Scholar 

  23. J.J. Olivero, R.L. Longbothum, J. Quant. Spectrosc. Radiat. Transf. 17, 233 (1977).

    Article  ADS  Google Scholar 

  24. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S. A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010).

    Article  ADS  Google Scholar 

  25. M.S. Wooldridge, P.V Torek, M.T. Donovan, D.L. Hall, T.A. Miller, T.R. Palmer, C.R. Schrock, Combust. Flame 131, 98 (2002).

    Article  Google Scholar 

  26. B. J. McBride, S. Gordon, NASA Ref. Publ. 1311, 84 (1996).

    Google Scholar 

  27. B.A. Rankin, D.R. Richardson, A.W. Caswell, A. Naples, J.L. Hoke, F.R. Schauer, in 53rd AIAA Aerosp. Sci. Meet. Kissimmee, FL (2015).

  28. B.A. Rankin, M.L. Fotia, D.E. Paxson, J.L. Hoke, F.R. Schauer, in 53rd AIAA Aerosp. Sci. Meet. Kissimmee, FL (2015).

  29. D.E. Paxson, in 52nd AIAA Aerosp. Sci. Meet. AIAA Pap. (2014).

Download references

Acknowledgements

Funding for this research was provided by the Air Force Research Laboratory (AFRL) under contract Nos. FA8650-10-C-2112 and FA8650-15-D-2580. The authors would like to thank Andrus Ionio of the Air Force Institute of Technology and Brian Sell and John Hoke of Innovative Scientific Solutions Inc. for setting up and operating the rotating detonation engine. Approved for public release: distribution unlimited (88ABW-2015-5934).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith D. Rein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rein, K.D., Roy, S., Sanders, S.T. et al. Measurements of gas temperatures at 100 kHz within the annulus of a rotating detonation engine. Appl. Phys. B 123, 88 (2017). https://doi.org/10.1007/s00340-017-6647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6647-5

Keywords

Navigation