Skip to main content
Log in

A Gas-Ion Ribbon Beam Source with a Wide-Aperture Cold Hollow Cathode

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A source of gas-ion ribbon beams on the basis of a glow discharge in a prolonged electrode system with a closed drift of fast electrons is described. This drift ensures a uniform plasma ion emission in the transverse direction relative to the magnetic induction vector. A discharge with a current of up to 3.5 A and a voltage of ∼400–600 V in a magnetic field of ∼6 mT is maintained under a gas flow of ∼40 cm3atm/min and ensures a saturation ion current density from plasma of up to ∼4 mA/cm2 (±5%) over a length of 50 cm. Using slit-type optics with an aperture of 50 × 1 cm, a ribbon beam with a current of up to 0.2 A and an energy of argon ions of up to 25 keV has been obtained. Methods of the concentration of discharge near the emissive slit and the effect of the electron drift on the ion emission from the plasma are considered. The optimal conditions for ion beam formation are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Plasma Emission Electronics, Shchanin, P.M., Ed., Izv. Vyssh. Uchebn. Zaved., Fiz., 2001, vol. 44, no. 9 (Topical issue).

    Google Scholar 

  2. Gavrilov, N.V., Nikulin, S.P., and Radkovskii, G.V., Prib. Tekh. Eksp., 1996, no. 1, p. 93.

  3. Plazmennye uskoriteli (Plasma Accelerators), Artsimovich, L.A., Ed., Moscow: Mashinostroenie, 1973, p. 54.

    Google Scholar 

  4. Fizika i primenenie plazmennykh uskoritelei (Physics and Application of Plasma Accelerators), Morozov, A.I., Ed., Minsk: Nauka i Tekhnika, 1974, p. 18.

    Google Scholar 

  5. Thornton, J.A., J. Vac. Sci. Technol., 1978, vol. 15, no. 2, p. 171.

    Google Scholar 

  6. Danilin, B.S., Nevolin, V.K., and Syrchin, V.K., Elektron. Tekh., Ser. 3: Mikroelektronika, 1977, no. 3 (69), p.37.

  7. Gavrilov, N.V. and Emlin, D.R., Zh. Tekh. Fiz., 2000, vol. 70, no. 5, p. 74.

    Google Scholar 

  8. Gavrilov, N.V. and Kuleshov, S.V., Abstracts of Papers, 5th Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk: Vodoley, 2000, p.181.

    Google Scholar 

  9. Gavrilov, N.V., Emlin, D.R., and Radkovskii, G.V., Prib. Tekh. Eksp., 2000, no. 2, p. 113.

  10. Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Nauka, 1987, p. 166.

    Google Scholar 

  11. Aston, G., Kaufman, H.R., and Wilbur, P.J., J., of American Institute of Aeronautics and Astronautic, 1978, vol. 16, no. 5, p. 516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilov, N.V., Emlin, D.R. & Kamenetskikh, A.S. A Gas-Ion Ribbon Beam Source with a Wide-Aperture Cold Hollow Cathode. Instruments and Experimental Techniques 46, 85–90 (2003). https://doi.org/10.1023/A:1022551827411

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022551827411

Keywords

Navigation