Skip to main content
Log in

Fore-Vacuum Ribbon Beam Plasma Electron Source Based on a Two-Stage Discharge System

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

We describe the design and main parameters of a fore-vacuum pressure, plasma-cathode electron source with an extended range of operating pressure. The source forms a ribbon electron beam with cross section 10 × 220 mm2 over a pressure range from 10–1 to 10 Pa. This wide pressure range is achieved by using two auxiliary hollow cathode discharge systems, between which there is a pressure difference. The beam current is up to 450 mA and the electron energy up to 8 keV. Inhomogeneity of the beam current density distribution is less than 15%. These beam parameters are advantageous for beam-plasma generation for the implementation of plasma chemical deposition of coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Richardson, A.S., Proc. APS Division of Plasma Physics Meeting, 2020, p. GI01-002.

  2. Shustin, E.G., J. Commun. Technol. Electron., 2017, vol. 62, p. 454.

    Article  Google Scholar 

  3. Vasilieva, T.M., Naumova, I.K., Galkina, O.V., et al., IEEE Trans. Plasma Sci., 2020, vol. 48, no. 4, p. 1035.

    Article  ADS  Google Scholar 

  4. Walton, S.G., Hernández, S.C., Boris, D.R., Petrova, T.B., and Petrov, G.M., J. Phys. D: Appl. Phys., 2017, vol. 50, no. 35, p. 354001.

    Article  Google Scholar 

  5. Dorf, L., Wang, J.C., Rauf, S., Monroy, G.A., Zhang, Y., Agarwal, A., and Collins, K., J. Phys. D: Appl. Phys., 2017, vol. 50, no. 27, p. 274003.

    Article  Google Scholar 

  6. Marchack, N., Buzi, L., Farmer, D.B., Miyazoe, H., Papalia, J.M., Yan, H., and Engelmann, S.U., J. Appl. Phys., 2021, vol. 130, no. 8, p. 080901.

    Article  ADS  Google Scholar 

  7. Li, C., Hofmann, T., Edinger, K., Godyak, V., and Oehrlein, G.S., J. Vac. Sci. Technol., B, 2020, vol. 38, no. 3, p. 032208.

    Article  Google Scholar 

  8. Malkin, A.M., Zaslavsky, V., Zheleznov, I., et al., Radiophys. Quantum Electron., 2020, vol. 63, p. 458. https://doi.org/10.1007/s11141-021-10071-1

    Article  ADS  Google Scholar 

  9. Li, L., Jinshu, W., and Yiman, W., IEEE Electron Device Lett., 2009, vol. 30, no. 3, p. 228. https://doi.org/10.1109/led.2008.2010783

    Article  ADS  Google Scholar 

  10. Gushenets, V.I., Koval, N.N., Schanin, P.M., and Tolkachev, V.S., IEEE Trans. Plasma Sci., 1997, vol. 27, no. 4, p. 1055.

    Article  ADS  Google Scholar 

  11. Klimov, A.S., Oks, E.M., and Zenin, A.A., Russ. Phys. J., 2018, vol. 60, no. 9, p. 1501.

    Article  Google Scholar 

  12. Vorobev, M.S. and Koval, N.N., Tech. Phys. Lett., 2016, vol. 42, p. 574.

    Article  ADS  Google Scholar 

  13. Klimov, A.S., Burdovitsin, V.A., Grishkov, A.A., et al., Plasma Phys. Rep., 2016, vol. 42, p. 96.

    Article  ADS  Google Scholar 

  14. Klimov, A.S., Bakeev, I.Yu, Oks, E.M., et al. Rev. Sci. Instrum., 2020, vol. 91, no. 4, p. 043505.

    Article  ADS  Google Scholar 

  15. Burdovitsin, V.A., Burachevskii, Y.A., Oks, E.M., and Fedorov, M.V., Instrum. Exp. Tech., 2003, vol. 46, p. 257.

    Article  Google Scholar 

  16. Lopatin, I.V., Akhmadeev, Y.H., and Koval, N.N., Rev. Sci. Instrum., 2015, vol. 86, no. 10, p. 103301.

    Article  ADS  Google Scholar 

  17. Akhmadeev, Y.H., Denisov, V.V., Koval, N.N., et al., Plasma Phys. Rep., 2017, vol. 43, p. 67.

    Article  ADS  Google Scholar 

  18. Shustin, E.G., Plasma Phys. Rep., 2021, vol. 47, no. 6, p. 536.

    Article  ADS  Google Scholar 

  19. Gielkens, S.W.A., Peters, P. J.M., Witteman, W.J., Borovikov, P.V., Stepanov, A.V., Tskhai, V.N., Zavjalov, M.A., Gushenets, V.I., and Koval, N.N., Rev. Sci. Instrum., 1996, vol. 67, no. 7, p. 2449.

    Article  ADS  Google Scholar 

  20. Schanin, P.M., Koval, N.N., Tolkachev, V.S., and Gushenets, V.I., Russ. Phys. J., 2000, vol. 43, no. 5, p. 427.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Special thanks to Ian Brown (Berkeley Lab) for English correction and helpful discussion.

Funding

The work was supported by a grant of the Ministry of Science and Higher Education of the Russian Federation, FEWM-2023-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Klimov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimov, A.S., Bakeev, I.Y., Dagri, J.E. et al. Fore-Vacuum Ribbon Beam Plasma Electron Source Based on a Two-Stage Discharge System. Bull. Russ. Acad. Sci. Phys. 88, 631–636 (2024). https://doi.org/10.1134/S1062873823706128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823706128

Keywords:

Navigation