Skip to main content
Log in

Features of Fundamental- and Subharmonics ECR Heating in a Magnetic Trap

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We compare the efficiency of microwave heating of electrons in a dense plasma at the fundamental harmonics (ω = eH/(mc)) and at the subharmonics (ω = eH/(2mc)) of the electron gyrofrequency. In particular, recent experimental results showing a higher efficiency of microwave heating at the frequency equal to one half of the electron gyrofrequency are analyzed. Equations describing the nonlinear subharmonic electron cyclotron resonance (ECR) heating are derived for an arbitrary geometry of the microwave field. If the microwave field has the “vacuum” polarization, then the microwave power absorbed by electrons at the fundamental harmonic of the electron gyrofrequency in rarefied plasmas exceeds by many orders of magnitude the corresponding power absorbed by electrons in the case of nonlinear heating at one half of the electron gyrofrequency. However, it is shown that this difference in a dense plasma does not exceed one order of magnitude, which is explained by the effect of depression of the resonance component of the microwave field. In this case, the efficiency of the formation of high-energy electron population can be influenced not only by the energy-deposition rate but mainly by the stability condition of an electron in the magnetic trap. It is shown that a twofold decrease in the magnetic field, necessary to satisfy the ECR condition at one half of the electron gyrofrequency, leads to a dramatic shortening of the hot-electron lifetime in a magnetic trap and, in turn, to a dramatic decrease in the energy-deposition efficiency. We discuss the dependence of the electron heating on the effect of quasi-static enhancement of the microwave field near a target located in a magnetic trap for the generation of X-ray emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Bacal, C. Gaudin, A. Bourdier, J. Bruneteau, J. M. Buzzi, K. S. Golovanivski, L. Hay, C. Rouille, and L. Schwartz, Nature, 384, 421 (1996).

    Google Scholar 

  2. S. Golubev, V. Zorin, A. Vodopyanov, C. Gaudin, S. Razin, C. Rouille, and M. Bacal, J. Plasma Fusion Res. Series, 4, 301 (2001).

    Google Scholar 

  3. N. S. Ginzburg and M. D. Tokman, Zh. Tech. Fiz., 54, 1062 (1984).

    Google Scholar 

  4. M. D. Tokman, in: Proc. Joint Varenna-Lausanna Int. Workshop on Theory of Fusion Plasmas, (Varenna, Italy, 1994, Soc. Italiana di Fisica, Bologna (1994), p. 437.

    Google Scholar 

  5. A. G. Litvak, in: M. A. Leontovich, ed., Reviews of Plasma Physics, Vol. 10 [in Russian], Énergoatomizdat, Moscow (1980), p. 164.

    Google Scholar 

  6. M. D. Tokman, Fiz. Plazmy, 10, 568 (1984).

    Google Scholar 

  7. B. I. Cohen, R. H. Cohen, W. M. Nevins, and T. D. Rognlien, Rev. Mod. Phys., 63, 949 (1991).

    Google Scholar 

  8. E. V. Suvorov and M. D. Tokman, Fiz. Plazmy, 10, 586 (1984).

    Google Scholar 

  9. A. I. Neishdatd and A.V. Timofeev, Zh. Éksp. Teor. Fiz., 66, 1706 1987).

    Google Scholar 

  10. A. G. Litvak, A. M. Sergeev, E. V. Suvorov, M. D. Tokman, and I. V. Khazanov, Phys. Fluids B, 5, 4347 (1993).

    Google Scholar 

  11. D. Farina and R. Pozzoli, Phys. Fluids B, 3, 570 (1991).

    Google Scholar 

  12. A. Kotel'nikovand G. V. Stupakov, Phys. Fluids B, 2, 882 (1990).

    Google Scholar 

  13. V, I. Arnold, V. V. Kozlov, and A. I. Neishdatd, in: R. V. Gamkrelidze, ed., Itogi Nauki i Techn., Sovrem. Probl. Matem., Fundament. Napravl., Vol. 3 [in Russian], VINITI, Moscow (1985), p. 304.

    Google Scholar 

  14. M. S. Janaki and B. Dasgupta, Phys. Fluids B, 4, 2696 (1992).

    Google Scholar 

  15. M. S. Janaki and B. Dasgupta, Phys. Rev. E, 52, 6912 (1995).

    Google Scholar 

  16. G. M. Fraiman and I. Yu. Kostyukov, Phys. Plasmas, 2, 926 (1995).

    Google Scholar 

  17. K. S. Serebrennikov, C. Gaudin, J.-M. Buzzi, J. Bruneteau, and C. Rouille, Phys. Rev. E, 63, Article No. 046405 (2001).

  18. C. Gaudin, L. Hay, J.-M. Buzzi, and M. Bacal, Rev. Sci. Instrum., 69, 890 (1998).

    Google Scholar 

  19. V. V. Zheleznyakov, Radiation in Astrophysical Plasmas, Kluwer, Dordrecht (1996).

    Google Scholar 

  20. A. V. Timofeev, in: M. A. Leontovich, ed., Reviews of Plasma Physics, Vol. 14 [in Russian], Énergoatomizdat, Moscow (1989), p. 63.

    Google Scholar 

  21. M. D. Tokman, Fiz. Plazmy, 15, 373 (1989).

    Google Scholar 

  22. B. V. Chirikov, in: M. A. Leontovich, ed., Reviews of Plasma Physics, Vol. 13 [in Russian], Énergoatomizdat, Moscow (1989), p. 1.

    Google Scholar 

  23. F. Jaeger, A. J. Lichtenberg, and M. Lieberman, Plasma Phys., 14, 1073 (1972).

    Google Scholar 

  24. F. Jaeger, A. J. Lichtenberg, and M. Lieberman, Plasma Phys., 15, 125 (1973).

    Google Scholar 

  25. G. Schmidt, Physics of High Temperature Plasmas, 2nd Ed., Academic Press, New York (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyukov, I.Y., Kryachko, A.Y. & Tokman, M.D. Features of Fundamental- and Subharmonics ECR Heating in a Magnetic Trap. Radiophysics and Quantum Electronics 45, 795–805 (2002). https://doi.org/10.1023/A:1022484417900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022484417900

Keywords

Navigation