Skip to main content
Log in

High-Current Pulsed ECR Ion Sources

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

At the present time, some ECR ion sources use a high-frequency powerful microwave radiation of modern gyrotrons for plasma heating. Due to high radiation power, such systems mainly operate in a pulsed mode. This type of ECR ion sources was developed at the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), and most experimental research was performed at the SMIS 37 facility, at which 37 gyrotrons with 37.5- and 75-GHz frequencies and 100- and 200-kW maximum powers, respectively, were used for plasma production. Such heating microwaves allow creating plasma with unique parameters: electron density >1013 cm–3, electron temperature of 50–300 eV, and ion temperature of about 1 eV. The principal difference between these systems and conventional ECR sources is a so-called quasi-gas-dynamic regime of plasma confinement. In accordance with the confinement regime, such sources have been called “gas-dynamic ECR sources.” Typically, plasma lifetime in such systems is about several tens of microseconds, which, in combination with the high plasma density, leads to the formation of plasma fluxes from a trap with a density of up to 1–10 A/cm2. The possibility of production of multiply charged ion beams (nitrogen, argon) and proton (or deuterium) beams with currents of up to a few hundred mA and normalized rms emittance of about 0.1π mm mrad was demonstrated. The next step in the research is a transition to continuous wave operation. For this purpose, a new experimental facility is under construction at the IAP RAS. A future source will utilize 28- and 37.5-GHz gyrotron radiation for plasma heating. An overview of the obtained results and the status of the new source development is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. V. Golubev, S. V. Razin, A. V. Sidorov, V. A. Skalyga, A. V. Vodopyanov, and V. G. Zorin, Rev. Sci. Instrum. 75, 1675 (2004).

    Article  ADS  Google Scholar 

  2. S. V. Golubev, I. V. Izotov, S. V. Razin, V. A. Skalyga, A. V. Vodopyanov, and V. G. Zorin, Fusion Sci. Technol. 47 (1T), 345 (2005).

    Article  Google Scholar 

  3. A. Sidorov, I. Izotov, S. Razin, V. Skalyga, V. Zorin, A. Balabaev, S. Kondrashev, and A. Bokhanov, Rev. Sci. Instrum. 77, 03A341 (2006).

  4. V. Skalyga, V. Zorin, I. Izotov, S. Razin, A. Sidorov, and A. Bohanov, Plasma Sources Sci. Technol. 15, 727 (2006).

    Article  ADS  Google Scholar 

  5. S. Golubev, I. Izotov, S. Razin, A. Sidorov, V. Skalyga, A. Vodopyanov, V. Zorin, and A. Bokhanov, Nucl. Instrum. Methods. Phys. Res. B 256, 537 (2007).

    Article  ADS  Google Scholar 

  6. M. Marie-Jeanne, P. Balint, Ch. Fourel, J. Giraud, J. Jacob, Th. Lamy, L. Latrasse, P. Sortais, Th. Thuillier, C. Daversin, F. Debray, Ch. Trophime, S. Veys, I. Izotov, V. Skalyga, et al., in Proceedings of the 20th International Workshop on Electron Cyclotron Resonance Ion Sources, Sydney, 2012, p. 111.

  7. T. Lamy, J. Jacob, J. Angot, P. Sole, T. Thuillier, M. Bakulin, A. G. Eremeev, I. Izotov, B. Movshevich, V. Skalyga, F. Debray, J. Dumas, C. Grandclement, P. Sala, and C. Trophime, in Proceedings of the 13th International Conference on Heavy Ion Accelerator Technology, Yokohama, 2015, Paper THM2I01.

  8. R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasma (Institute of Physics, Bristol, 1996).

    Google Scholar 

  9. M. A. Dorf, V. G. Zorin, A. V. Sidorov, A. F. Bokhanov, I. V. Izotov, S. V. Razin, and V. A. Skalyga, Nucl. Instrum. Methods Phys. Res. A 733, 107 (2014).

    Article  ADS  Google Scholar 

  10. S. V. Golubev, S. V. Razin, V. E. Semenov, A. N. Smirnov, A. V. Vodopyanov, and V. G. Zorin, Rev. Sci. Instrum. 71, 669 (2000).

    Article  ADS  Google Scholar 

  11. A. V. Vodopyanov, S. V. Golubev, V. I. Khizhnyak, D. A. Mansfeld, A. G. Nikolaev, E. M. Oks, and G. Yu. Yushkov, High Energy Phys. Nucl. Phys. 31 (S1), 152 (2007).

    Google Scholar 

  12. V. Pastukhov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Consultants Bureau, New York, 1987), Vol. 13, p. 203.

    Google Scholar 

  13. V. V. Mirnov and D. D. Ryutov, Sov. Tekh. Phys. Lett. 5, 279 (1979).

    Google Scholar 

  14. V. G. Zorin, V. A. Skalyga, I. V. Izotov, S. V. Razin, A. V. Sidorov, T. Lamy, and T. Thuillier, Trans. Fusion Sci. Technol. 59, 140 (2011).

    Article  Google Scholar 

  15. T. Thuillier, T. Lamy, L. Latrasse, I. V. Izotov, A. V. Sidorov, V. A. Skalyga, V. G. Zorin, and M. Marie-Jeanne, Rev. Sci. Instrum. 79, 02A314 (2008).

  16. I. V. Izotov, A. V. Sidorov, V. A. Skalyga, V. G. Zorin, T. Lamy, L. Latrasse, and T. Thuillier, IEEE Trans. Plasma Sci. 36, 1494 (2008).

    Article  ADS  Google Scholar 

  17. V. Skalyga, I. Izotov, V. Zorin, and A. Sidorov, Phys. Plasmas 19, 023509 (2012).

    Article  ADS  Google Scholar 

  18. V. Skalyga, I. Izotov, S. Razin, A. Sidorov, and V. Zorin, in Proceedings of the 8th International Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications,” Nizhny Novgorod, 2011, p. 200.

  19. L. Maunoury, L. Adoui, J. P. Grandin, F. Noury, B. A. Huber, E. Lamour, C. Prigent, J. P. Rozet, D. Vernhet, P. Leherissier, and J. Y. Pacquet, Rev. Sci. Instrum. 79, 02A313 (2008).

  20. I. V. Izotov, V. A. Skalyga, and V. G. Zorin, Rev. Sci. Instrum. 83, 02A342 (2012).

  21. Beta-beam task group. beta-beam.web.cern.ch.

  22. S. Gammino, L. Celona, G. Ciavola, D. Mascali, R. Miracoli, and F. Maimone, in Proceedings of Linear Accelerator Conference (INAC2010), Tsukuba, 2010, Paper THP116.

  23. M. Lindroos, S. Bousson, R. Calaga, H. Danared, G. Devanz, R. Duperrier, J. Eguia, M. Eshraqi, S. Gamino, H. Hahn, A. Jansson, C. Oyon, S. Pape-Moller, S. Peggs, A. Ponton, et al., Nucl. Instrum. Methods B 269, 3258 (2011).

    Article  ADS  Google Scholar 

  24. R. Gobin, G. Adroit, D. Bogard, G. Bourdelle, N. Chauvin, O. Delferriere, Y. Gauthier, P. Girardot, P. Guiho, F. Harrault, J. L. Jannin, D. Loiseau, P. Mattei, A. Roger, Y. Sauce, et al., Rev. Sci. Instrum. 83, 02A345 (2012).

  25. V. Skalyga, I. Izotov, S. Razin, A. Sidorov, S. Golubev, T. Kalvas, H. Koivisto, and O. Tarvainen, Rev. Sci. Instrum. 85, 02A702 (2014).

  26. V. Skalyga, I. Izotov, A. Sidorov, S. Razin, V. Zorin, O. Tarvainen, H. Koivisto, and T. Kalvas, J. Instrum. 7, P10010 (2012).

    Article  Google Scholar 

  27. V. Skalyga, I. Izotov, S. Golubev, A. Vodopyanov, and O. Tarvainen, Rev. Sci. Instrum. 87, 02A715 (2016).

  28. Gykom Scientific Production Enterprise. www.gycom.ru.

Download references

Funding

This work was supported by the Federal Target Program “Research and Development on Priority Directions of Development of Scientific Research Complex of Russia for 2014–2020,” agreement no. 14.604.21.0195 (unique identification number RFMEFI60417X0195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Skalyga.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalyga, V.A., Golubev, S.V., Izotov, I.V. et al. High-Current Pulsed ECR Ion Sources. Plasma Phys. Rep. 45, 984–989 (2019). https://doi.org/10.1134/S1063780X19080087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19080087

Navigation