Skip to main content
Log in

Transge ne inheritance, segregation and expression in bread wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Transgene integration, inheritance and expression were studied in six transgenic wheat (Triticum aestivum) lines produced by co-bombardment with two plasmids containing marker genes and genes encoding HMW subunits of wheat glutenin, respectively. Transgene insertion number ranged from 1 to approximately 15. Within a transgenic locus the majority of plasmid copies were found at dispersed genomic sites separated by intervening DNA. However, evidence was obtained for the arrangement of introduced plasmid copies as concatamers and for plasmid truncation and rearrangement. Transgenes were frequently located in genetically unlinked chromosome sites, resulting in independent segregation of loci among progeny. In two lines this gave rise to progeny containing only the gene of interest. Transgenes were inherited in the T1 generation as a dominant trait although Mendelian segregation ratios were not always observed. No evidence of co-suppression of endogenous HMW subunits was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altpeter, F., V. Vasil, V. Srivastava & I.K. Vasil, 1996. Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nature Biotech 14: 1155-1159.

    Article  CAS  Google Scholar 

  • Altpeter, F., I. Diaz, H. McAuslane, K. Gaddour, P. Carbonero & I.K. Vasil, 1999. Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CME. Molec Breed 5: 53-63.

    Article  CAS  Google Scholar 

  • Alvarez, M.L., S. Guelman, N.G. Halford, S. Lustig, M.L. Reggiardo, N. Ryabushkina, P. Shewry, J. Stein & R.H. Vallejos, 2000. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100: 319-327.

    Article  CAS  Google Scholar 

  • Barcelo, P. & P.A. Lazzeri, 1995. Transformation of cereals by microprojectile bombardment of immature inflorescence and scutellum tissues. In: H. Jones (Ed.), Methods in Molecular Biology-Plant Gene Transfer and Expression Protocols, vol. 49, pp. 113-123. Humana Press Inc, Totowa, NJ.

    Google Scholar 

  • Barcelo, P., C. Hagel, D. Becker, A. Martin & H. Lörz, 1994. Transgenic cereal (tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant J 5: 583-592.

    PubMed  CAS  Google Scholar 

  • Barro, F., L. Rooke, F. Békés, P. Gras, A.S. Tatham, R.J. Fido, P.A. Lazzeri, P.R. Shewry & P. Barcelo, 1997. Transformation of wheat with HMW subunit genes results in improved functional properties. Nature Biotech 15: 1295-1299.

    Article  CAS  Google Scholar 

  • Becker, D., R. Brettschneider & H. Lörz, 1994. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5: 299-307.

    Article  PubMed  CAS  Google Scholar 

  • Bieri, S., I. Potrykus & J. Futterer, 2000. Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet 100: 755-763.

    Article  CAS  Google Scholar 

  • Blechl, A.E. & O.D. Anderson 1996. Expression of a novel highmolecular-weight glutenin subunit gene in transgenic wheat. Nature Biotech 14: 875-879.

    Article  CAS  Google Scholar 

  • Bliffeld, M., J. Mundy, I. Potrykus & J. Fütterer, 1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98: 1079-1086.

    Article  CAS  Google Scholar 

  • Cannell, M.E., A. Doherty, P.A. Lazzeri & P. Barcelo, 1999. A population of wheat and tritordeum transformants showing a high degree of marker gene stability and heritability. Theor Appl Genet 99: 772-784.

    Article  CAS  Google Scholar 

  • Chen, W.P., P.D. Chen, D.J. Liu, R. Kynast, B. Friebe, R. Velazhahan, S. Muthukrishnan & B.S. Gill, 1999. Development of wheat scab systems is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet 99: 755-760.

    Article  CAS  Google Scholar 

  • Christensen, A.H. & P.H. Quail, 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Trans Res 5: 213-218.

    Article  CAS  Google Scholar 

  • Clausen, M., R. Krauter, G. Schachermayr, I. Potrykus & C. Sautter, 2000. Antifungal activity of a virally encoded gene in transgenic wheat. Nature Biotech 18: 446-449.

    Article  CAS  Google Scholar 

  • D'Ovidio, R. & O.D. Anderson, 1994. PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theor Appl Genet 88: 759-763.

    Article  Google Scholar 

  • D'Ovidio, R., D. Lafiandra & E. Porceddu, 1996. Identification and molecular characterization of a large insertion within the repetitive domain of a high-molecular-weight glutenin subunit gene from hexaploid wheat. Theor Appl Genet 93: 1048-1053.

    Article  Google Scholar 

  • Dahleen, L.S., P.A. Okubara & A.E. Blechl, 2001. Transgenic approaches to combat fusarium head blight in wheat and barley. Crop Sci 41: 628-637.

    Article  Google Scholar 

  • De Neve, M., S. De Buck, A. Jacobs, M. Van Montagu & A. Depicker, 1997. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11: 15-29.

    Article  PubMed  CAS  Google Scholar 

  • Fettig, S. & D. Hess, 1999. Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgenic Res 8: 179-189.

    Article  CAS  Google Scholar 

  • Finnegan, J. & D. McElroy, 1994. Transgene inactivation: Plants fight back! Bio/Technology 12: 883-888.

    Article  Google Scholar 

  • Fu, X., L.T. Duc, S. Fontana, B.B. Bong, P. Tinjuangjun, D. Sudhakar, R.M. Twyman, P. Christou & A. Kohli, 2000. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Trans Res 9: 11-19.

    Google Scholar 

  • Gahakwa, D., S.B. Maqbool, X. Fu, D. Sudhakar, P. Christou & A. Kohli, 2000. Transgenic rice as a system to study the stability of transgene expression: multiple heterologous transgenes show similar behaviour in diverse genetic backgrounds. Theor Appl Genet 101: 388-399.

    Article  CAS  Google Scholar 

  • Halford, N.G., J. Forde, P.R. Shewry & M. Kreis, 1989. Functional analysis of the upstream regions of a silent and an expressed member of a family of wheat seed protein genes in transgenic tobacco. Plant Sci 62: 207-216.

    Article  CAS  Google Scholar 

  • Halford, N.G., J.M. Field, H. Blair, P. Urwin, K. Moore, L. Robert, R. Thompson, R.B. Flavell, A.S. Tatham & P.R. Shewry, 1992. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83: 373-378.

    Article  CAS  Google Scholar 

  • Karunaratne, S., A. Sohn, A. Mouradov, J. Scott, H.-H. Steinbiß & K.J. Scott, 1996. Transformation of wheat with the gene encoding the coat protein of barley yellow mosaic virus. Aust J Plant Physiol 23: 429-435.

    Article  CAS  Google Scholar 

  • Kohli, A., M. Leech, P. Vain, D.A. Laurie & P. Christou, 1998. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95: 7203-7208.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, G.J., F. Macritchie & C.W. Wrigley, 1988. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Gu-D1 loci. J Cereal Sci 7: 109-112.

    Article  CAS  Google Scholar 

  • Oldach, K.H., D. Becker & H. Lorz, 2001. Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Molec Plant-Microbe Inter 14: 832-838.

    CAS  Google Scholar 

  • Pawlowski, W.P. & D.A. Somers, 1998. Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci USA 95: 12106-12110.

    Article  PubMed  CAS  Google Scholar 

  • Payne, P.I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Annu Rev Plant Physiol 38: 141-153.

    Article  CAS  Google Scholar 

  • Pijnacker, L.P. & M.A. Ferwerda, 1994. Sister chromatid exchanges in cultured immature embyos of wheat species and regenerants. Theor Appl Genet 89: 287-292.

    Article  Google Scholar 

  • Popineau, Y., G. Deshayes, J. Lefebvre, R.J. Fido, A.S. Tatham & P.R. Shewry, 2001. Prolamin aggregation, gluten viscoelasticity and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx HMW glutenin subunit transgenes. J Agric Food Chem 49: 395-401.

    Article  PubMed  CAS  Google Scholar 

  • Rooke, L., F. Barro, A.S. Tatham, R. Fido, S. Steele, F. Békés, P. Gras, A. Martin, P.A. Lazzeri, P.R. Shewry & P. Barcelo, 1999a. Altered functional properties of tritordeum by transformation with HMW glutenin subunit genes. Theor Appl Genet 99: 851-858.

    Article  CAS  Google Scholar 

  • Rooke, L., F. Békés, R. Fido, F. Barro, P. Gras, A.S. Tatham, P. Barcelo, P.A. Lazzeri & P.R. Shewry, 1999b. Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci 30: 115-120.

    Article  CAS  Google Scholar 

  • Shewry, P.R., A.S. Tatham, F. Barro, P. Barcelo & P. Lazzeri, 1995a. Biotechnology of breadmaking: unraveling and manipulating the multi-protein gluten complex. Bio/Technology 13: 1185-1190.

    Article  CAS  Google Scholar 

  • Shewry, P.R., A.S. Tatham & R.J. Fido, 1995b. Separation of plant proteins by electrophoresis. In: H. Jones (Ed.), Methods in Molecular Biology-Plant Gene Transfer and Expression Protocols, vol. 49, pp. 423-437. Humana Press Inc, Totowa, NJ.

    Google Scholar 

  • Sivamani, E., A. Bahieldin, J.M. Wraith, T. Al-Niemi, W.E. Dyer, T.-H.D. Ho & R. Qu, 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155: 1-9.

    Article  PubMed  CAS  Google Scholar 

  • Sivamani, E., C.W. Brey, L.E. Talbert, M.A. Young, W.E. Dyer, W.K. Kaniewski & R.D. Qu, 2002. Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. Transg Res 11: 31-41.

    Article  CAS  Google Scholar 

  • Spencer, T.M., J.V. O'Brien, W.G. Start, T.R. Adams, W.J. Gordon-Kamm & P.G. Lemaux, 1992. Segregation of transgenes in maize. Plant Mol Biol 18: 201-210.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, V., V. Vasil & I.K. Vasil, 1996. Molecular characterization of the fate of transgenes in transformed wheat. Theor Appl Genet 92: 1031-1037.

    Article  CAS  Google Scholar 

  • Stacey, J. & P.G. Isaac, 1994. Isolation of DNA from plants. In: P.G. Isaac (Ed.), Methods in Molecular Biology-Protocols for Nucleic Acid Analysis by Nonradioactive Probes, vol. 28, pp. 9-15. Humana Press Inc, Totowa, NJ.

    Google Scholar 

  • Stoger, E., S. Williams, D. Keen & P. Christou, 1998. Molecular characteristics of transgenic wheat and the effect on transgene expression. Trans Res: 7 463-471.

    Article  CAS  Google Scholar 

  • Stoger, E., S. Williams, P. christou, R.E. Down & J.E. Gatehouse, 1999. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Molec Breed 5: 65-73.

    Article  CAS  Google Scholar 

  • Vasil, V., V. Srivastava, A.M. Castillo, M.E. Fromm & I.K. Vasil, 1993. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11: 1553-1558.

    Article  Google Scholar 

  • Weeks, J.T., O.D. Anderson & A.E. Blechl, 1993. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102: 1077-1084.

    PubMed  CAS  Google Scholar 

  • Weir, B., X. Gu, M.B. Wang, N. Upadhyaya, A.R. Elliott & R.I.S. Brettell, 2001. Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28: 807-818.

    CAS  Google Scholar 

  • Zhang, L.Y., R. French, W.G. Langenberg & A Mitra, 2001. Accumulation of barley stripe mosaic virus is significantly reduced in transgenic wheat plants expressing a bacterial ribonuclease. Transgenic Res 10: 13-19.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rooke, L., Steele, S.H., Barcelo, P. et al. Transge ne inheritance, segregation and expression in bread wheat. Euphytica 129, 301–309 (2003). https://doi.org/10.1023/A:1022296017801

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022296017801

Navigation