Skip to main content
Log in

Simultaneous Sorption of Cd, Cu, Ni, Zn, Pb, and Cr on Soils Treated with Sewage Sludge Supernatant

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Disposal of sewage sludge creates the potential for heavy metal accumulation in theenvironment. This study assessed nine soils currently used as Dedicated Land Disposal units(DLDs) for treatment and disposal of municipal sewage sludge in the vicinity of Sacramento,California. Adsorption characteristics of these soils for Cd, Cu, Ni, Zn, Pb, and Cr were studiedby simultaneously mixing these elements in the range of 0-50 µmol L-1 with sludgesupernatant and reacting with the soil using a soil:supernatant ratio of 1:30, pH = 4.5 or 6.5, andconstant ionic strength (0.01 M Na-acetate). The concentration of metals in the supernatant wasdetermined after a 24 hr equilibration period. Adsorption isotherms showed that metal sorptionwas linearly related to its concentration in the supernatant solution. The distribution coefficientKd (Kd = concentration on solid phase/concentration in solution phase) was computed as theslope of the sorption isotherm. The distribution coefficients were significantly correlated to soilorganic matter content for Ni, Cu, Cd, and Pb at pH 4.5 and for Ni, Cu, Zn, and Cd at pH 6.5.There was also a correlation between Kd and soil specific surface area but no relationship to othersoil properties such as CEC, clay content, and noncrystalline Fe and Al materials. Therefore, soilorganic carbon and surface area appear to be the most important soil properties influencing metaladsorption through formation of organo-metal complexes. The Kd values for all elements werehigher at pH 6.5 than at 4.5. Selectivity between metals resulted in the following metal affinitiesbased on their Kd values: Pb>Cu>Zn>Ni>Cd≈Cr at pH 4.5 andPb>Cu≈Zn>Cd>Ni>Cr at pH 6.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, J. D., Brown, D. S. and Novo-Gradac, K. J.: 1991, MINTEQA2PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3. 11. U. S. EPA. Athens, Georgia.

  • Behel, D. Jr, Darrell, D. W., Nelson, E. and Sommers, L. E.: 1983, J. Environ.Qual. 12, 181.

    Google Scholar 

  • Boyd, S. A., Sommers, L. E. and Nelson, D. W.: 1981, Soil Sci.Soc.Am.J. 45, 1241.

    Google Scholar 

  • Carte r. D. L., Mortland, M. M. and Kemper, W. D.: 1982, 'Specific surfaces’, in A. Klute (ed.) Methods of Soil Analysis.Part I-Physical and Mineralogical Methods, 2nd ed. Soil Science Society of America, Madison, Wisconsin, pp. 413423.

    Google Scholar 

  • Chairidchai, P. and Ritchie, G. S. P.: 1990, Soil Sci.Soc.Am.J. 54, 1242.

    Google Scholar 

  • Chang, A. C., Page, A. L., Warneke, J. E., Resketo, M. R. and Jones, T. E.: 1983, J.Environ.Qual. 12, 391.

    Google Scholar 

  • Cline, G. R. and O'Connor, G. A.: 1984, Soil Sci. 138, 248.

    Google Scholar 

  • Dahlgren, R. A. and Marrett, D. J.: 1991, Soil Sci.Soc.Am.J. 55, 1382.

    Google Scholar 

  • Eary, L. E. and Rai, D.: 1991, Soil Sci.Soc.Am.J. 55, 676.

    Google Scholar 

  • Elrashidi, M. A. and O'Connor. G. A.: 1982, Soil Sci.Soc.A m.J. 46, 1153.

    Google Scholar 

  • Elliott, H. A. and Denneny, C. M.: 1982, J.Environ.Qual. 11, 658.

    Google Scholar 

  • Garcia-Miragaya, J.: 1984, Soil Sci. 138, 147.

    Google Scholar 

  • Gee, G. W. and Bauder, J. W.: 1986, 'Particle-Size Analysis’, in A. Klute (ed.), Methods of Soil Analysis.Part I-Physical and Mineralogical Methods, 2nd ed. Soil Science Society of America, Madison, Wisconsin, pp. 38341 1.

    Google Scholar 

  • Harter, R. D.: 1992, Soil Sci.Soc.Am.J. 56, 444.

    Google Scholar 

  • Holmgren, G. G. S.: 1967, Soil Sci.Soc.Am.Proc. 31, 210.

    Google Scholar 

  • Inskeep, W. P. and Baham, J.: 1983, Soil Sci.Soc.Am.J. 47, 1109.

    Google Scholar 

  • James, B. R. and Bartlett, R. J.: 1983a, J.Environ.Qual. 12, 173.

    Google Scholar 

  • James, B. R. and Bartlett, R. J.: 1983b, J.Environ.Qual. 12, 177.

    Google Scholar 

  • Kuo, S. and Baker, A. S.: 1980, Soil Sci.Soc.Am.J. 44, 969.

    Google Scholar 

  • Kurdi, F. and Doner, H. E.: 1983, Soil Sci.Soc.Am.J. 47, 873.

    Google Scholar 

  • McKeague, J. A. (ed.): 1976, Manual on Sampling and Methods of Analysis, Soil Res. Inst., Agriculture Canada, Ottawa.

    Google Scholar 

  • Nelson, R. E.: 1982, 'Carbonate and Gypsum’, in A. L. Page (ed.), Methods of Soil Analysis.Part 2-Chemical and Microbiological Properties, 2nd ed. Soil Science Society of America, Madison, Wisconsin, pp. 181–197.

    Google Scholar 

  • Page, A. L. and Chang, A. C.: 1981, 'Trace Metals in Soils and Plants Receiving Municipal Wastewater Irrigation’, in F. M. D'Itri (ed.), Municipal Wastewater in Agriculture, Academic Press; New York, pp. 351–372.

    Google Scholar 

  • Petruzzelli, G., Guidi, G. and Lubrano, L.: 1985, Commun.Soil Sci.Plant Anal. 16, 971.

    Google Scholar 

  • Sadiq, M.: 1981, Commun.Soil Sci.Plant Anal. 12, 619.

    Google Scholar 

  • Santillan-Medrano, J. and Jurinak, J. J.: 1975, Soil Sci.Soc.Am.Proc. 39, 851.

    Google Scholar 

  • Soil Survey Staff: 1984, Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey. Soil Survey Investigations, Rep. No. 1. USDA-SCS Agric. Handb. 436. U. S. Government Printing Office, Washington DC.

    Google Scholar 

  • Sommers, L. E.: 1977, J.Environ.Qual. 6, 225.

    Google Scholar 

  • Sposito, G., Lund, L. J. and Chang, A. C.: 1982, Soil Sci.Soc.A m.J. 46, 260.

    Google Scholar 

  • Sposito, G., Holtzclaw, K. M. and LeVesque-Madore, C. S.: 1979, Soil Sci.Soc.Am.J. 43, 1148.

    Google Scholar 

  • Sposito, G., Holtzclaw, K. M. and LeVesque-Madore, C. S.: 1981, Soil Sci.Soc.Am.J. 45, 465.

    Google Scholar 

  • Sposito, G. and Mattigod, S. V.: 1979, GEOCHEM: A Computer Program for the Calculation of Chemical Equilibria in Soil Solutions and Other Natural Water Systems. Dep. Soil and Environ. Sci., University of California, Riverside.

    Google Scholar 

  • Susetyo, W., Dobbs, J. C., Carreira, L. A., Azarraga, L. V. and Grimm, D. M.: 1990, Anal.Chem. 62, 1215.

    Google Scholar 

  • Whittig, L. D. and Allardice, W. R.: 1986, 'X-Ray Diffraction Techniques’, in A. Klute (ed.), Methods of Soil Analysis.Part [-Physical and Mineralogical Methods, 2nd ed. Soil Science Society of America, Madison, Wisconsin, pp. 331–362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Walker, W.J., Dahlgren, R.A. et al. Simultaneous Sorption of Cd, Cu, Ni, Zn, Pb, and Cr on Soils Treated with Sewage Sludge Supernatant. Water, Air, & Soil Pollution 93, 331–345 (1997). https://doi.org/10.1023/A:1022169531878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022169531878

Navigation