Skip to main content

Advertisement

Log in

Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The sorption, desorption, and speciation of cadmium (Cd), nickel (Ni), and iron (Fe) in four calcareous soils were investigated at the pH range of 2–9. The results indicated that sorption of Fe by four soils was higher than 80 % at pH 2, while in the case of Cd and Ni was less than 30 %. The most common sequence of metal sorption at pH 2–9 for four soils was in the order of Fe ≫ Ni > Cd. Cadmium and Ni sorption as a function of pH showed the predictable trend of increasing metal sorption with increase in equilibrium pH, while the Fe sorption trend was different and characterized by three phases. With regard to the order of Cd, Ni, and Fe sorption on soils, Cd and Ni showed high affinity for organic matter (OM), whereas Fe had high tendency for calcium carbonate (CaCO3). Results of metal desorption using 0.01 M NaCl demonstrated that metal sorption on soils containing high amounts of CaCO3 was less reversible in comparison to soils containing high OM. In general, Cd and Ni desorption curves were characterized by three phases; (1) the greatest desorption at pH 2, (2) the low desorption at pH 3–7, and (3) the least desorption at pH > 7. The MINTEQ speciation solubility program showed that the percentage of free metals declined markedly with increase of pH, while the percentage of carbonate and hydroxyl species increased. Furthermore, MINTEQ predicted that saturation index (SI) of metals increased with increasing pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afkhami, A., Saber-Tehrani, M., & Bagheri, H. (2010). Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenyl-hydrazine. Journal of Hazardous Materials, 181, 836–844.

    Article  CAS  Google Scholar 

  • Allison, J. D., Brown, D. S., & Novo-Gradac, K. J. (1991). MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: version 3.0 User’s Manual, EPA/600/3–91/021.

  • Ammari, T., & Mengel, K. (2006). Total soluble Fe in soil solutions of chemically different soils. Geoderma, 136, 876–885.

    Article  CAS  Google Scholar 

  • Anderson, P. R., & Christensen, T. H. (1988). Distribution coefficients of Cd, Co, Ni, and Zn in soils. Journal of Soil Science, 39, 15–22.

    Article  CAS  Google Scholar 

  • Antoniadis, V., & Tsadilas, C. D. (2007). Sorption of cadmium, nickel, and zinc in mono- and multimetal systems. Applied Geochemistry, 22, 2375–2380.

    Article  CAS  Google Scholar 

  • Appel, C., & Ma, L. (2002). Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of Environmental Quality, 31, 581–589.

    Article  CAS  Google Scholar 

  • Arnesen, A. K. M., & Singh, B. R. (1998). Plant uptake and DTPA-extractability of Cd, Cu, Ni and Zn in a Norwegian alum shale soil as affected by previous addition of dairy and pig manures and peat. Canadian Journal of Soil Science, 78, 531–539.

    Article  CAS  Google Scholar 

  • Baes, C. F., & Mesmer, R. E. (1976). The Hydrolysis of Cations (p. 489). New York: Wiley.

    Google Scholar 

  • Bolton, K. A., & Evans, L. J. (1996). Cadmium adsorption capacity of selected Ontario soils. Canadian Journal of Soil Science, 76, 183–189.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1–18.

    Article  CAS  Google Scholar 

  • Cavallaro, N., & McBride, M. B. (1978). Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Science Society of America Journal, 42, 550–556.

    Article  CAS  Google Scholar 

  • Christensen, T. H., Lehmann, N., Jackson, T., & Holm, P. E. (1996). Cadmium and nickel distribution coefficients for sandy aquifer materials. Journal of Contaminant Hydrology, 24, 75–84.

    Article  CAS  Google Scholar 

  • Elliot, H. A., Liberati, M. R., & Huang, C. P. (1986). Competitive adsorption of heavy metals by soils. Journal of Environmental Quality, 15, 214–219.

    Article  Google Scholar 

  • Gao, Y. Z., He, J. Z., Ling, W. T., Hu, H. Q., & Liu, F. (2003). Effects of organic acids on copper and cadmium desorption from contaminated soils. Environment International, 29, 613–618.

    Article  CAS  Google Scholar 

  • Garcia-Miragaya, J., & Page, A. L. (1978). Sorption of trace quantities of cadmium by soils with different chemical and mineralogical composition. Water, Air, and Soil Pollution, 9, 289–299.

    CAS  Google Scholar 

  • Ge, Y., Murray, P., & Hendershot, W. H. (2000). Trace metal speciation and bioavailability in urban soils. Environmental Pollution, 107, 137–144.

    Article  CAS  Google Scholar 

  • Gerke, J. (1997). Aluminium and iron(III) species in the soil solution including organic complexes with citrate and humic substances. Zeitschrift für Pflanzenernährung und Bodenkunde, 160, 427–432.

    Article  CAS  Google Scholar 

  • González, A. G., Pokrovsky, O. S., Jiménez-Villacorta, F., Shirokova, L. S., Santana-Casiano, J. M., González-Dávila, M., et al. (2014). Iron adsorption onto soil and aquatic bacteria: XAS structural study. Chemical Geology, 372, 32–45.

    Article  Google Scholar 

  • Gray, C. W., McLaren, R. G., Roberts, A. H. C., & Condron, L. M. (1998). Sorption and desorption of cadmium from some New Zealand soils: effect of pH and contact time. Australian Journal of Soil Research, 36, 199–216.

    Article  CAS  Google Scholar 

  • Han, F. X., & Singer, A. (2007). Solution chemistry of trace elements in arid zone soils. In F. X. Han (Ed.), Biogeochemistry of trace elements in arid environments (pp. 69–105). Springer Dordrecht: Environmental Pollution.

    Chapter  Google Scholar 

  • Harter, R. D. (1983). Effect of soil pH on adsorption of lead, copper, zinc and nickel. Soil Science Society of America Journal, 47, 47–51.

    Article  CAS  Google Scholar 

  • Iyaka, Y. A. (2011). Nickel in soils: a review of its distribution and impacts. Scientific Research and Essays, 6, 6774–6777.

    Google Scholar 

  • Jalali, M., & Hemati, N. (2013). Chemical fractionation of seven heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, and Zn) in selected paddy soils of Iran. Paddy and Water Environment, 11, 299–309.

    Article  Google Scholar 

  • Jalali, M., & Hemati Matin, N. (2015). Sorption of phosphorus in calcareous paddy soils of Iran: effects of soil/solution ratio and pH. Environment and Earth Science, 73, 2047–2059.

    Article  CAS  Google Scholar 

  • Jalali, M., & Moradi, F. (2013). Competitive sorption of Cd, Cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils. Environmental Monitoring and Assessment, 185, 8831–8846.

    Article  CAS  Google Scholar 

  • Jiang, H., Li, T., Han, X., Yang, X., & He, Z. (2012). Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils. Environmental Monitoring and Assessment, 184, 6325–6335.

    Article  CAS  Google Scholar 

  • Karaca, A. (2004). Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma, 122, 297–303.

    Article  CAS  Google Scholar 

  • Kinneburgh, D. G., Jackson, M. L., & Sayers, J. K. (1976). Adsorption of alkaline earth, transition and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Science Society of America Journal, 40, 796–799.

    Article  Google Scholar 

  • Krishnamurti, G. S. R., Huang, P. M., & Kozak, L. M. (1999). Desorption kinetics of cadmium from soils using M ammonium nitrate and M ammonium chloride. Communications in Soil Science and Plant Analysis, 30, 2785–2800.

    Article  CAS  Google Scholar 

  • Lamb, D. T., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171, 1150–1158.

    Article  CAS  Google Scholar 

  • Lee, S. Z., Allen, H. E., Huang, C. P., Sparks, D. S., Sanders, P. F., & Peijnenburg, W. J. G. M. (1996). Predicting soil-water partition coefficients for cadmium. Environmental Science and Technology, 30, 3418–3424.

    Article  CAS  Google Scholar 

  • Li, Y. M., Chaney, R. L., & Schneiter, A. A. (1995). Effect of soil chloride level on cadmium concentration in sunflower kernels. Plant and Soil, 167, 275–280.

    Article  Google Scholar 

  • Li, X., Zhou, Q., Wei, S., Ren, W., & Sun, X. (2011). Adsorption and desorption of carbendazim and cadmium in typical soils in northeastern China as affected by temperature. Geoderma, 160, 347–354.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1972). Inorganic phase equilibria of micronutrients in soils. In J. J. Mortvedt, P. M. Giordano, & W. L. Lindsay (Eds.), Micronutrients in agriculture (pp. 41–57). Soil Science Society of America: Madison.

    Google Scholar 

  • Lindsay, W. L. (1979). Chemical Equilibrium in Soils (p. 449). New York: Wiley.

    Google Scholar 

  • Loganathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2012). Cadmium sorption and desorption in soils: a review. Critical Reviews in Environmental Science and Technology, 42, 489–533.

    Article  CAS  Google Scholar 

  • Mahdavi, S., Jalali, M., & Afkhami, A. (2013). Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chemical Engineering Communications, 200, 448–470.

    Article  CAS  Google Scholar 

  • Maldonado, M. T., & Price, N. M. (2001). Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillar-iophyceae). Journal of Phycology, 37, 298–309.

    Article  CAS  Google Scholar 

  • Marchi, G., Guilherme, L. R. G., Chang, A. C., Curi, N., & Guerreiro, M. C. (2006). Changes in isoelectric point as affected by anion adsorption on two Brazilian Oxisols. Communications in Soil Science and Plant Analysis, 37, 1357–1366.

    Article  CAS  Google Scholar 

  • Mashhady, A. S., & Rowell, D. L. (1978). Soil alkalinity. II. The effects of Na2CO3 on iron and manganese supply to tomatoes. Soil Science, 29, 367–372.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1989). Reactions controlling heavy metal solubility in soils. In B. A. Stewart (Ed.), Advances in Soil Science (pp. 1–56). New York: Springer.

    Chapter  Google Scholar 

  • McBride, M. B. (1994). Environmental Chemistry of Soils (p. 406). Oxford Univ. Press, New York.

  • McBridge, M. B. (1980). Chemisorption of Cd2+ on calcite surfaces. Soil Science Society of America Journal, 44, 26–28.

    Article  Google Scholar 

  • McGrath, S. P., Sanders, J. R., & Shabaly, M. H. (1988). The effects of soil organic matter levels on soil solution concentrations and extractabilities of manganese, zinc and copper. Geoderma, 42, 177–188.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Palmer, L. T., Tiller, K. G., Beech, T. W., & Smart, M. K. (1994). Increasing soil salinity causes elevated cadmium concentrations in field-grown potato tubers. Journal of Environmental Quality, 23, 1013–1018.

    Article  CAS  Google Scholar 

  • Mellis, E. V., Pessoa da Cruz, M. C., & Casagrande, J. C. (2004). Nickel adsorption by soils in relation to pH, organic matter and iron oxides. Scientia Agricola, 61, 190–195.

    Article  CAS  Google Scholar 

  • Merdy, P., Tarchouna Gharbi, L., & Lucas, Y. (2009). Pb, Cu and Cr interactions with soil: sorption experiments and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347, 192–199.

    Article  CAS  Google Scholar 

  • Merrikhpour, H., & Jalali, M. (2013). Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy, 15, 303–316.

    Article  CAS  Google Scholar 

  • Moharami, S., & Jalali, M. (2013). Effects of cations and anions on iron and manganese sorption and desorption capacity in calcareous soils from Iran. Environment and Earth Science, 68, 847–858.

    Article  CAS  Google Scholar 

  • Moral, R., Gilkes, R. J., & Jordan, M. M. (2005). Distribution of heavy metals in calcareous and non-calcareous soils in Spain. Water, Air, and Soil Pollution, 162, 127–142.

    Article  CAS  Google Scholar 

  • Morse, J. W. (1986). The surface chemistry of calcium carbonate minerals in natural waters: an overview. Marine Chemistry, 20, 91–112.

    Article  CAS  Google Scholar 

  • Naidu, R., Bolan, N. S., Kookana, R. S., & Tiller, K. G. (1994). Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils. European Journal of Soil Science, 45, 419–429.

    Article  CAS  Google Scholar 

  • Naidu, R., Kookana, R. S., Sumner, M. E., Harter, R. D., & Tiller, K. G. (1997). Cadmium sorption and transport in variable charge soils: a review. Journal of Environmental Quality, 26, 602–617.

    Article  CAS  Google Scholar 

  • Najafi, S., & Jalali, M. (2015). Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils. Environmental Monitoring and Assessment, 187, 585–595.

    Article  Google Scholar 

  • Norvell, W. A., Wu, J., Hopkins, D. G., & Welch, R. M. (2000). Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Science Society of America Journal, 64, 2162–2168.

    Article  CAS  Google Scholar 

  • Rattan, R. K., & Deb, D. L. (1981). Self-diffusion of zinc and iron in soils as affected by pH, CaCO3, moisture, carrier and phosphorus levels. Plant and Soil, 63, 377–393.

    Article  CAS  Google Scholar 

  • Rowell, D. L. (1994). Soil science: methods and applications (p. 345). Harlow: Longman Group.

    Google Scholar 

  • Schulin, R., Johnson, A., & Frossard, E. (2010). Trace element-deficient soils. In P. S. Hooda (Ed.), Trace elements in soils (pp. 175–197). Chichester: Wiley.

    Chapter  Google Scholar 

  • Schulthess, C. P., & Huang, C. P. (1990). Adsorption of heavy-metals by silicon and aluminum-oxide surfaces on clay-minerals. Soil Science Society of America Journal, 54, 679–688.

    Article  Google Scholar 

  • Seatz, L. F., & Peterson, H. B. (1964). Acid, alkaline, saline and sodic soils. In F. E. Bear (Ed.), Chemistry of the soil (pp. 292–319). Reinhold Publishing Corporation.

  • Serrano, S., O’Day, P. A., Vlassopoulos, D., Garcia-Gonzalez, M. T., & Garrido, F. (2009). A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils. Geochimica et Cosmochimica Acta, 73, 543–558.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Tsadilas, C. D., & Rinklebe, J. (2013). A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties. Advances in Colloid and Interface Science, 201–202, 43–56.

    Article  Google Scholar 

  • Smolders, E., & Mertens, J. (2013). Cadmium. In B. J. Alloway (Ed.), Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (pp. 283–311). Springer Dordrecht: Environmental Pollution.

    Chapter  Google Scholar 

  • Sparks, D. L. (2003). Environmental soil chemistry (p. 352). Academic Press, New York.

  • Sposito, G. (1989). The chemistry of soils (p. 277). New York: Oxford University Press.

    Google Scholar 

  • Sposito, G., & Schindler, P. W. (1986). Reactions at the soil colloid-soil solution interface. In L. Landner (Ed.), Speciation of metals in water, sediment and soil systems (pp. 683–699). Springer Verlag, Berlin.

  • Sposito, G., Lund, J., & Chang, A. C. (1982). Trace metal chemistry in arid zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46, 260–264.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1982). Humus chemistry: genesis, composition, reactions (p. 443). New York: John Wiley & Sons.

    Google Scholar 

  • Suavé, S., McBride, M., & Hendershot, W. (1998). Soil solution speciation of lead(II): effects of organic matter and pH. Soil Science Society of America Journal, 62, 618–621.

    Article  Google Scholar 

  • Suavé, S., Hendershot, W., & Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environmental Science and Technology, 34, 1125–1131.

    Article  Google Scholar 

  • Sunda, W., & Huntsman, S. A. (1997). Interrelated influence of iron, light, and cell size on marine phytoplankton growth. Nature, 390, 391–392.

    Article  Google Scholar 

  • Tack, F. M. G. (2010). Trace elements: general soil chemistry, principles and processes. In P. S. Hooda (Ed.), Trace elements in soils (pp. 9–39). Chichester: Wiley.

    Chapter  Google Scholar 

  • Tiller, K. G., Gerth, J., & Briimmer, G. (1984). The relative affinities of Cd, Ni and Zn for different soil clay fractions and goethite. Geoderma, 34, 17–35.

    Article  CAS  Google Scholar 

  • Tipping, E., Rieuwerts, J., Pan, G., Ashmore, M. R., Lofts, S., Hill, M. T. R., et al. (2003). The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environmental Pollution, 125, 213–225.

    Article  CAS  Google Scholar 

  • Tye, A. M., Young, S., Crout, N. M. J., Zhang, H., Preston, S., Zhao, F. J., et al. (2004). Speciation and solubility of Cu, Ni and Pb in contaminated soils. European Journal of Soil Science, 55, 579–590.

    Article  CAS  Google Scholar 

  • Uren, N. C. (1992). Forms, reactions, and availability of nickel in soils. In D. L. Sparks (Ed.), Advances in agronomy (pp. 141–203). New York: Academic Press.

    Google Scholar 

  • Usman, A. R. A. (2008). The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma, 144, 334–343.

    Article  CAS  Google Scholar 

  • Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F., et al. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14, 1223–1233.

    Article  CAS  Google Scholar 

  • Violante, A., Krishnamurti, G. S. R., & Pigna, M. (2008). Factors affecting the sorption–desorption of trace elements in soil environments. In A. Violante, P. M. Huang, & G. M. Gadd (Eds.), Biophysico-chemical processes of heavy metals and metalloids in soil environments (pp. 215–261). Inc: John Wiley & Sons.

    Google Scholar 

  • Wagner, G. J. (1993). Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 51, 173–212.

    Article  CAS  Google Scholar 

  • Wang, Y. J., Zhou, D. M., Luo, X. S., Sun, R. J., & Chen, H. M. (2004). Cadmium adsorption in montmorillonite as affected by glyphosate. Journal of Environmental Sciences (China), 16, 881–884.

    CAS  Google Scholar 

  • Yang, J. Y., Yang, X. E., He, Z. L., Li, T. Q., Shentu, J. L., & Stoffella, P. J. (2006). Effects of pH, organic acids, and inorganic ions on lead desorption from soils. Environmental Pollution, 143, 9–15.

    Article  CAS  Google Scholar 

  • Yang, Y., Zhang, F. S., Li, H. F., & Jiang, R. F. (2009). Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. Journal of Environmental Management, 90, 1117–1122.

    Article  CAS  Google Scholar 

  • Yin, Y., Allen, H. E., Li, Y., Huang, C. P., & Sanders, P. F. (1996). Adsorption of mercury (II) by soil: effects of pH, chloride, and organic matter. Journal of Environmental Quality, 25, 837–844.

    Article  CAS  Google Scholar 

  • Zachara, J. M., Cowan, C. E., & Resch, C. T. (1991). Sorption of divalent metals on calcite. Geochimica et Cosmochimica Acta, 55, 1549–1562.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Tahervand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahervand, S., Jalali, M. Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Environ Monit Assess 188, 322 (2016). https://doi.org/10.1007/s10661-016-5313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5313-4

Keywords

Navigation