Skip to main content
Log in

A Hierarchical Finite Element for Geometrically Non-linear Vibration of Thick Plates

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A p-version, hierarchical finite element for moderately thick isotropic plates is derived and free vibrations are studied. The effects of the rotatory inertia, transverse shear and geometrical non-linearity, due to moderately large displacements, are taken into account. The time domain free vibration equations of motion are obtained by applying the principle of virtual work, and are mapped into the frequency domain by the harmonic balance method. The ensuing frequency domain equations are solved by a predictor–corrector method. The convergence properties of the element, the influence of the plate's thickness and of the width to length ratio on the backbone curves and on the non-linear mode shapes are investigated. The first and higher order modes are analysed and results are compared with published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, W. and Petyt, M., ‘Geometrically non-linear vibration analysis of thin, rectangular plates using the hierarchical finite element method — I: The fundamental mode of isotropic plates’, Comput. Struct. 63 (1997) 295-308.

    Google Scholar 

  2. Han, W. and Petyt, M., ‘Geometrically non-linear vibration analysis of thin, rectangular plates using the hierarchical finite element method — II: 1st mode of laminated plates and higher modes of isotropic and laminated plates’, Comput. Struct. 63 (1997) 309-318.

    Google Scholar 

  3. Ribeiro, P. and Petyt, M., ‘Nonlinear vibration of plates by the hierarchical finite element and continuation methods’, Int. J. Mech. Sci. 41 (1999) 437-459.

    Google Scholar 

  4. Ribeiro, P. and Petyt, M., ‘Nonlinear free vibration of isotropic plates with internal resonance’, Int. J. Nonlinear Mech. 35 (2000) 263-278.

    Google Scholar 

  5. Ribeiro, P. and Petyt, M., ‘Geometrical non-linear, steady-state, forced, periodic vibration of plates. Part I: Model and convergence studies’, J. Sound Vib. 226 (1999) 955-983.

    Google Scholar 

  6. Ribeiro, P. and Petyt, M., ‘Geometrical non-linear, steady-state, forced, periodic vibration of plates. Part II: Stability study and analysis of multi-modal, multi-frequency response’, J. Sound Vib. 226 (1999) 985-1010.

    Google Scholar 

  7. Mei, C. and Decha-Umphai, K., ‘A finite element method for non-linear forced vibrations of rectangular plates’, AIAA J. 23 (1985) 1104-1110.

    Google Scholar 

  8. Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 4th edn, McGraw-Hill, London, 1988.

    Google Scholar 

  9. Sathyamoorthy, M., ‘Nonlinear vibration analysis of plates: a review and survey of current developments’, Appl. Mech. Rev. 40 (1987) 1553-1561.

    Google Scholar 

  10. Reissner, E., ‘The effect of transverse shear deformation on the bending of elastic plates’, J. Appl. Mech. 12 (1945) 69-77.

    Google Scholar 

  11. Mindlin, R.D., ‘Influence of rotatory inertia and shear on flexural vibrations of isotropic, elastic plates’, J. Appl. Mech. 18 (1951) 31-38.

    Google Scholar 

  12. Petyt, M., Introduction to Finite Element Vibration Analysis, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  13. Liew, K.M., Wang, C.M., Xiang, X. and Kitipornchai, S., Vibration of Mindlin Plates. Programming the p-Version Ritz Method, Elsevier, Amsterdam, 1998.

    Google Scholar 

  14. Raju, K.K. and Hinton, E., ‘Nonlinear vibrations of thick plates using Mindlin plate elements’, Int. J. Num. Meth. Eng. 15 (1980) 249-257.

    Google Scholar 

  15. Mei, C. and Prasad, C.B., ‘Effects of large deflection and transverse shear on response of rectangular symmetric composite laminates subjected to acoustic excitation’, J. Comp. Mater. 23 (1989) 606-639.

    Google Scholar 

  16. Reddy, J.N., and Chao, W.C., ‘Large deflection and large-amplitude free vibrations of laminated composite-materials plates’, Comput. Struct. 13 (1981) 341-347.

    Google Scholar 

  17. Brockman, R.A., ‘Dynamics of the bilinear Mindlin plate element’, Int. J. Num. Meth. Eng. 24 (1987) 2343-2356.

    Google Scholar 

  18. Chen, W.C. and Liu, W.H., ‘Deflections and free vibrations of laminated plates — Levy-type solutions’, Int. J. Mech. Sci. 32 (1990) 779-793.

    Google Scholar 

  19. Ganapathi, M., Varadan, T.K. and Sarma, S.M., ‘Nonlinear flexural vibrations of laminated orthotropic plates’, Comput. Struct. 39 (1991) 685-688.

    Google Scholar 

  20. Reddy, J.N., ‘Theory and analysis of laminated composite plates’, in: Soares, C.A.M. and Freitas, M.J.M. (eds), Mechanics of Composite Materials and Structures, Kluwer Academic Publishers, Dordrecht, 1999, pp. 1-62.

    Google Scholar 

  21. Nayfeh, A.H. and Balachandra, B., Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods, Wiley, New York, 1995.

    Google Scholar 

  22. Bardell, N.S., ‘Free vibration analysis of a flat plate using the hierarchical finite element method’, J. Sound Vib. 151 (1991) 263-289.

    Google Scholar 

  23. Leissa, A.W., Vibration of Plates, NASA Sp-60, 1969.

  24. Raju, K.K., Rao, G.V. and Raju, I.S., ‘Effect of geometric nonlinearity on the free flexural vibrations of moderately thick rectangular plates’, Comput. Struct. 9 (1978) 441-444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, P. A Hierarchical Finite Element for Geometrically Non-linear Vibration of Thick Plates. Meccanica 38, 117–132 (2003). https://doi.org/10.1023/A:1022027619946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022027619946

Navigation