Skip to main content
Log in

Levy solution for free vibration analysis of functionally graded plates based on a refined plate theory

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

In this paper, analytical solution of a refined plate theory is developed for free vibration analysis of functionally graded plates under various boundary conditions. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to power law distribution of the volume fraction of the constituents. The Levy-type solution in conjunction with the state space concept is used to solve the equations of motion of rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions. The accuracy of the present solutions is verified by comparing the present results with those obtained using the classical theory, first-order theory, and higher-order theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baferani, A. H., Saidi, A. R., and Ehteshami, H. (2011). “Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation.” Composite Structures, Vol. 93, No. 7, pp. 1842–1853.

    Article  Google Scholar 

  • Brischetto, S. and Carrera, E. (2010). “Advanced mixed theories for bending analysis of functionally graded plates.” Computers & Structures, Vol. 88, Nos. 23–24, pp. 1474–1483.

    Article  Google Scholar 

  • Ferreira, A. J. M., Batra, R. C., Roque, C. M. C., Qian, L. F., and Jorge, R. M. N. (2006). “Natural frequencies of functionally graded plates by a meshless method.” Composite Structures, Vol. 75, Nos. 1–4, pp. 593–600.

    Article  Google Scholar 

  • He, X. Q., Ng, T. Y., Sivashanker, S., and Liew, K. M. (2001). “Active control of FGM plates with integrated piezoelectric sensors and actuators.” International Journal of Solids and Structures, Vol. 38, No. 9, pp. 1641–1655.

    Article  MATH  Google Scholar 

  • Hosseini-Hashemi, S., Fadaee, M., and Atashipour, S. R. (2011a). “A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates.” International Journal of Mechanical Sciences, Vol. 53, No. 1, pp. 11–22.

    Article  Google Scholar 

  • Hosseini-Hashemi, S., Fadaee, M., and Atashipour, S. R. (2011b). “Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure.” Composite Structures, Vol. 93, No. 2, pp. 722–735.

    Article  Google Scholar 

  • Hosseini-Hashemi, S., Rokni Damavandi Taher, H., Akhavan, H., and Omidi, M. (2010). “Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory.” Applied Mathematical Modelling, Vol. 34, No. 5, pp. 1276–1291.

    Article  MATH  MathSciNet  Google Scholar 

  • Jha, D. K., Kant, T., and Singh, R. K. (2013). “A critical review of recent research on functionally graded plates.” Composite Structures, Vol. 96, pp. 833–849.

    Article  Google Scholar 

  • Kim, Y. W. (2005). “Temperature dependent vibration analysis of functionally graded rectangular plates.” Journal of Sound and Vibration, Vol. 284, Nos. 3–5, pp. 531–549.

    Article  Google Scholar 

  • Liu, D. Y., Wang, C. Y., and Chen, W. Q. (2010). “Free vibration of FGM plates with in-plane material inhomogeneity.” Composite Structures, Vol. 92, No. 5, pp. 1047–1051.

    Article  MathSciNet  Google Scholar 

  • Mantari, J. L. and Guedes Soares, C. (2013). “Finite element formulation of a generalized higher order shear deformation theory for advanced composite plates.” Composite Structures, Vol. 96, pp. 545–553.

    Article  Google Scholar 

  • Matsunaga, H. (2008). “Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory.” Composite Structures, Vol. 82, No. 4, pp. 499–512.

    Article  Google Scholar 

  • Mirtalaie, S. H. and Hajabasi, M. A. (2011). “Free vibration analysis of functionally graded thin annular sector plates using the differential quadrature method.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 225, No. 3, pp. 568–583.

    Google Scholar 

  • Mori, T. and Tanaka, K. (1973). “Average stress in matrix and average elastic energy of materials with misfitting inclusions.” Acta Metallurgica, Vol. 21, No. 5, pp. 571–574.

    Article  Google Scholar 

  • Natarajan, S. and Manickam, G. (2012). “Bending and vibration of functionally graded material sandwich plates using an accurate theory.” Finite Elements in Analysis and Design, Vol. 57,pp. 32–42.

    Article  Google Scholar 

  • Nguyen-Xuan, H., Tran, L. V., Nguyen-Thoi, T., and Vu-Do, H. C. (2011). “Analysis of functionally graded plates using an edge-based smoothed finite element method.” Composite Structures, Vol. 93, No. 11, pp. 3019–3039.

    Article  Google Scholar 

  • Nguyen-Xuan, H., Tran, L. V., Thai, C. H., and Nguyen-Thoi, T. (2012). “Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing.” Thin-Walled Structures, Vol. 54, pp. 1–18.

    Article  Google Scholar 

  • Oyekoya, O. O., Mba, D. U., and El-Zafrany, A. M. (2009). “Buckling and vibration analysis of functionally graded composite structures using the finite element method.” Composite Structures, Vol. 89, No. 1, pp. 134–142.

    Article  Google Scholar 

  • Pradyumna, S. and Bandyopadhyay, J. N. (2008). “Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation.” Journal of Sound and Vibration, Vol. 318, Nos. 1–2, pp. 176–192.

    Article  Google Scholar 

  • Qian, L. F., Batra, R. C., and Chen, L. M. (2003). “Free and forced vibrations of thick rectangular plates using higher-order shear and normal deformable plate theory and meshless Petrov-Galerkin (MLPG) method.” Computer Modeling in Engineering and Sciences, Vol. 4, No. 5, pp. 519–534.

    MATH  Google Scholar 

  • Qian, L. F., Batra, R. C., and Chen, L. M. (2004). “Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method.” Composites Part B: Engineering, Vol. 35, Nos. 6–8, pp. 685–697.

    Article  Google Scholar 

  • Reddy, J. N. (1984). “A simple higher-order theory for laminated composite plates.” Journal of Applied Mechanics, Vol. 51, No. 4, pp. 745–752.

    Article  MATH  Google Scholar 

  • Reddy, J. N. (2000). “Analysis of functionally graded plates.” International Journal for Numerical Methods in Engineering, Vol. 47, Nos. 1–3, pp. 663–684.

    Article  MATH  Google Scholar 

  • Roque, C. M. C., Ferreira, A. J. M., and Jorge, R. M. N. (2007). “A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory.” Journal of Sound and Vibration, Vol. 300, Nos. 3–5, pp. 1048–1070.

    Article  Google Scholar 

  • Shimpi, R. P. (2002). “Refined plate theory and its variants.” AIAA Journal, Vol. 40, No. 1, pp. 137–146.

    Article  Google Scholar 

  • Sundararajan, N., Prakash, T., and Ganapathi, M. (2005). “Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments.” Finite Elements in Analysis and Design, Vol. 42, No. 2, pp. 152–168.

    Article  Google Scholar 

  • Talha, M. and Singh, B. N. (2010). “Static response and free vibration analysis of FGM plates using higher order shear deformation theory.” Applied Mathematical Modelling, Vol. 34, No. 12, pp. 3991–4011.

    Article  MATH  MathSciNet  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2011). “A refined plate theory for functionally graded plates resting on elastic foundation.” Composites Science and Technology, Vol. 71, No. 16, pp. 1850–1858.

    Article  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2012). “An efficient and simple refined theory for buckling analysis of functionally graded plates.” Applied Mathematical Modelling, Vol. 36, No. 3, pp. 1008–1022.

    Article  MATH  MathSciNet  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2013a). “Efficient higher-order shear deformation theories for bending and free vibration analyses of functionally graded plates.” Archive of Applied Mechanics, Vol. 83, No. 12, pp. 1755–1771.

    Article  MATH  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2013b). “Finite element formulation of various four unknown shear deformation theories for functionally graded plates.” Finite Elements in Analysis and Design, Vol. 75, pp. 50–61.

    Article  MATH  MathSciNet  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2013c). “A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates.” Composite Structures, Vol. 101, pp. 332–340.

    Article  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2013d). “Zeroth-order shear deformation theory for functionally graded plates resting on elastic foundation.” International Journal of Mechanical Sciences, Vol. 73, pp. 40–52.

    Article  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2014). “Improved refined plate theory accounting for effect of thickness stretching in functionally graded plates.” Composites Part B: Engineering, Vol. 56, pp. 705–716.

    Article  Google Scholar 

  • Thai, H. T. and Kim, S. E. (2010). “Free vibration of laminated composite plates using two variable refined plate theory.” International Journal of Mechanical Sciences, Vol. 52, No. 4, pp. 626–633.

    Article  Google Scholar 

  • Thai, H. T. and Kim, S. E. (2011). “Levy-type solution for buckling analysis of orthotropic plates based on two variable refined plate theory.” Composite Structures, Vol. 93, No. 7, pp. 1738–1746.

    Article  Google Scholar 

  • Thai, H. T. and Kim, S. E. (2013a). “A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates.” Composite Structures, Vol. 96, pp. 165–173.

    Article  Google Scholar 

  • Thai, H. T. and Kim, S. E. (2013b). “A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates.” Composite Structures, Vol. 99, pp. 172–180.

    Article  Google Scholar 

  • Thai, H. T., Taehyo, P., and Choi, D. H. (2013). “An efficient shear deformation theory for vibration of functionally graded plates.” Archive of Applied Mechanics, Vol. 83, No. 1, pp. 137–149.

    Article  MATH  Google Scholar 

  • Thai, H. T. and Vo, T. P. (2013). “A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates.” Applied Mathematical Modelling, Vol. 37, No. 5, pp. 3269–3281.

    Article  MathSciNet  Google Scholar 

  • Tran, L. V., Ferreira, A. J. M. and Nguyen-Xuan, H. (2013). “Isogeometric analysis of functionally graded plates using higher-order shear deformation theory.” Composites Part B: Engineering, Vol. 51, pp. 368–383.

    Article  Google Scholar 

  • Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O. A., Rabczuk, T., Bui, T. Q., and Bordas, S. P. A. (2013). “NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter.” Composite Structures, Vol. 99, pp. 309–326.

    Article  Google Scholar 

  • Vel, S. S. and Batra, R. C. (2004). “Three-dimensional exact solution for the vibration of functionally graded rectangular plates.” Journal of Sound and Vibration, Vol. 272, Nos. 3–5, pp. 703–730.

    Article  Google Scholar 

  • Woo, J., Meguid, S. A., and Ong, L. S. (2006). “Nonlinear free vibration behavior of functionally graded plates.” Journal of Sound and Vibration, Vol. 289, No. 3, pp. 595–611.

    Article  Google Scholar 

  • Zhao, X., Lee, Y. Y., and Liew, K. M. (2009). “Free vibration analysis of functionally graded plates using the element-free kp-Ritz method.” Journal of Sound and Vibration, Vol. 319, Nos. 3–5, pp. 918–939.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ho Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thai, HT., Choi, DH. Levy solution for free vibration analysis of functionally graded plates based on a refined plate theory. KSCE J Civ Eng 18, 1813–1824 (2014). https://doi.org/10.1007/s12205-014-0409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-014-0409-2

Keywords

Navigation