Skip to main content
Log in

Refined theory for vibration of thick plates with the lateral and tangential loads

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on the three-dimensional elastodynamics, without using the classical assumption, an operator method is established to refine the dynamic theory of an infinite homogenous isotropic plate by using the spectral decomposition of operators. By this method, the governing equations of the bending and stretching vibrations of plates with the lateral and tangential loads on the surface are derived from the Boussinesq–Galerkin solution of the three-dimensional elasticity, respectively. To effectively deduce the governing equations, a complex differential operator is introduced. Dispersion relations based on the refined equations and the three-dimensional elastodynamics are compared to verify the refined theory of plates. It is shown that the dispersion relation of the refined theory of plates agrees more with the result based on the three-dimensional elastodynamics than Mindlin’s theory. Therefore, the refined equations are accurate that can be used to solve the vibration of thick plates and determine high-order vibration modes of plates. The applicable conditions of the refined plate theory are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barber, J.: Elasticity Solid Mechanics and Its Applications, vol. 107. Springer, Berlin (2003)

    Google Scholar 

  2. Weisz-Patrault, D., Bock, S., Gurlebeck, K.: Three-dimensional elasticity based on quaternion-valued potentials. Int. J. Solids Struct. 51(9), 3422–3430 (2014). doi:10.1016/j.ijsolstr.2014.06.002

    Article  Google Scholar 

  3. Cheng, S.: Elasticity theory of plates and a refined theory. J. Appl. Mech. 46(3), 644–650 (1979). doi:10.1115/1.3424620

    Article  MathSciNet  MATH  Google Scholar 

  4. Clough, R.W., Penzien, J.: Dynamics of Structures. McGraw-Hill Companies, New York (1975)

    MATH  Google Scholar 

  5. Eringen, A.C., Suhubi, E.S.: Elastodynamics Linear Theory, vol. 2. Academic Press, New York (1975)

    MATH  Google Scholar 

  6. Hu, C., Ma, F., Ma, X.R., Huang, W.H.: Refined dynamic equations of the plate bending without any assumptions (in Chinese). Scientia Sinica Physica, Mechanica & Astronomica 41(6), 781–790 (2011). doi:10.1360/132010-788

    Article  Google Scholar 

  7. Hu, C., Fang, X.Q., Long, G., Huang, W.H.: Hamiltonian systems of propagation of elastic waves and localized vibrations in the strip plate. Int. J. Solids Struct. 43(21), 6568–6573 (2006). doi:10.1016/j.ijsolstr.2006.01.011

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, H.C.: Variational Principles in Elasticity and Its Applications (in Chinese). Science Press, Beijing (1981)

    Google Scholar 

  9. Karnovsky, I.A., Lebed, O.I.: Non-classical Vibrations of Aches and Beams. McGraw-Hill Companies, New York (2003)

    Google Scholar 

  10. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  11. Li, F.M., Hu, C., Huang, W.H.: One-dimensional localization of elastic waves in rib-stiffened plates (in Chinese). Chin. J. Aeronaut. 15(4), 208–212 (2002). doi:10.1016/S1000-9361(11)60154-4

    Article  Google Scholar 

  12. Liu, D.K., Hu, C.: Scattering of flexural wave and dynamic stress concentration in Mindlin thick plates. Acta. Mech. Sin. 12(2), 169–185 (1996). doi:10.1007/s10483-014-1883-6

    Article  MATH  Google Scholar 

  13. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18, 31–36 (1951). doi:10.1007/978-1-4613-8865-4

    MATH  Google Scholar 

  14. Pao, Y.H., Mow, C.C.: Diffraction of Elastic Waves and Dynamic Stress Concentrations. Grane Russak, New York (1971)

    Google Scholar 

  15. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(3), 69–77 (1945)

    MathSciNet  MATH  Google Scholar 

  16. Song, W.M.: Dyadic Green’s Function and Operator Theory of Electromagnetic Waves (in Chinese). Hefei University of Science and Technology of China Press, Hefei (1991)

    Google Scholar 

  17. Stoyan, V.A., Dvirnychuk, K.V.: Mathematical modeling of three-dimensional fields of transverse dynamic displacements of thick elastic plates. Cybern. Syst. Anal. 49(6), 852–864 (2013). doi:10.1007/s10559-013-9575-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Vasil’ev, V.V., Lur’e, S.A.: On refined theories, plates, and shells. J. Compos. Mater. 26(4), 546–557 (1992). doi:10.1016/0010-4361(92)90019-Q

    Article  Google Scholar 

  19. Victor, A.E., Wojciech, P.: Editorial: Refined theories of plates and shells. Zeitschrift fur Angewandte Mathematik und Mechanik 94: 1-2 and 5-6. doi:10.1002/zamm.201300148 (2014)

  20. Wang, M.Z., Zhao, B.S.: The decomposed form of the three-dimensional elastic plate. Chin. J. Theoret. Appl. Mech. 166, 207–216 (2003). doi:10.1007/s00707-003-0029-2

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Hu, H., Zhang, X. et al. Refined theory for vibration of thick plates with the lateral and tangential loads. Arch Appl Mech 87, 439–455 (2017). https://doi.org/10.1007/s00419-016-1203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1203-z

Keywords

Navigation