Skip to main content
Log in

On the Correlation Between Deposition Rate and Process Parameters in Remote Plasma-Enhanced Chemical Vapor Deposition

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasma-enhanced chemical vapor deposition has become one of the most important thin film deposition technologies. To avoid direct plasma exposure the substrates may be placed in the remote region. A carrier gas conveys the plasma energy to the deposition area where the reactions with the monomer molecules take place. For the engineering of such a process the modeling of the achievable deposition rate is of great interest. Among different possibilities semiempirical models provide a fast and easily utilizable tool without intensive computer simulations or the necessity of detailed knowledge about the chemistry involved. From deposition experiments with oxygen and an organosilicon monomer (hexamethyldisiloxane, HMDSO) the remote composite parameter is suggested. It combines microwave power, monomer and carrier gas flow rate, and the distance of the substrate from the plasma source. This parameter was derived from the ratio between atomic oxygen and monomer flow rate. In the parameter range considered the deposition rate is described as well ordered and the energy- and monomer-deficient regions are clearly separated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Morosoff, Plasma Deposition, Treatment, and Etching of Polymers (R. d'Agostino, ed.), Academic Press, Orlando, Florida (1990), p. 2.

    Google Scholar 

  2. H. O. Pierson, Handbook of Chemical Vapor Deposition (CVD)—Principles, Technology and Applications, Noyes Publications (1992), p. 98.

  3. J. R. Roth, Industrial Plasma Engineering—Vol. I: Principles, Institute of Physics Publishing (1995), p. 16.

  4. M. J. Helix, K. V. Vaidyanathan, B. G. Streetman, H. B. Dietrich, and P. K. Chatterjee, Thin Solid Films 55, 143 (1978).

    Google Scholar 

  5. G. Lucovsky, D. V. Tsu, R. A. Rudder, and R. J. Markunas, Thin Film Processes II (J. L. Vossen and W. Kern, eds.), Academic Press, Orlando, Florida (1991), p. 566.

    Google Scholar 

  6. A. M. Wrobel and M. R. Wertheimer, Plasma Deposition, Treatment, and Etching of Polymers (R. d'Agostino, ed.), Academic Press, Orlando, Florida (1990), p. 203.

    Google Scholar 

  7. S.-K. Park and D. J. Economou, J. Electrochem. Soc. 137, 2103 (1990).

    Google Scholar 

  8. M. J. Kushner, J. Appl. Phys. 71, 4173 (1992).

    Google Scholar 

  9. V. Vahedi, G. DiPesco, C. K. Birdsall, and M. A. Liebermann, Plasma Sources Sci. Technol. 2, 261 (1993).

    Google Scholar 

  10. J. P. Boeuf, L. C. Pitchford, A. Fiala, and Ph. Belenguer, Surf. Coat. Technol. 59, 32 (1993).

    Google Scholar 

  11. H. Malvos, A. Ricard, J. Szekely, H. Michel, M. Gantois, and D. Ablitzer, Surf. Coat. Technol. 59, 59 (1993).

    Google Scholar 

  12. L. Layeillon, P. Duverneuil, J. P. Couderc, and B. Despax, Plasma Sources Sci. Technol. 3, 61 (1994).

    Google Scholar 

  13. M. Virmani, D. A. Levedakis, G. B. Raupp, and T. S. Cale, J. Vac. Sci. Technol. A 14, 997 (1996).

    Google Scholar 

  14. H. F. Winters, J. W. Coburn, and E. Kay, J. Appl. Phys. 48, 4973 (1977).

    Google Scholar 

  15. B. N. Chapman and V. J. Minkiewicz, J. Vac. Sci. Technol. 15, 329 (1978).

    Google Scholar 

  16. B. N. Chapman, T. A. Hansen, and V. J. Minkiewicz, J. Appl. Phys. 51, 3608 (1980).

    Google Scholar 

  17. H. Yasuda and T. Hirotsu, J. Polym. Sci.: Polym. Chem. Ed. 16, 743 (1978).

    Google Scholar 

  18. H. Yasuda, Plasma Polymerization, Academic Press, New York (1985), p. 260.

    Google Scholar 

  19. F. Werner, D. Korzec, and J. Engemann, Plasma Sources Sci. Technol. 3, 473 (1994).

    Google Scholar 

  20. M. Brake, J. Hinkle, J. Asmussen, M. Hawley, and R. Kerber, Plasma Chem. Plasma Process. 3, 63 (1983).

    Google Scholar 

  21. D. A. Levedakis and G. B. Raupp, Chemical Perspective of Microelectronic Materials III, Symposium Proceedings (C. R. Abernathy, ed.), Materials Research Society (1993), p. 537.

  22. A. Granier, F. Nicolazo, C. Vallée, A. Goullet, G. Turban, and B. Grolleau, Plasma Sources Sci. Technol. 6, 147 (1997).

    Google Scholar 

  23. A. Brockhaus, Y. Yuan, S. Behle, and J. Engemann, J. Vac. Sci. Technol. A 14, 1882 (1996).

    Google Scholar 

  24. A. T. Bell and K. Kwong, AIChE J. 18, 990 (1972).

    Google Scholar 

  25. O. Guymont, E. Le Duc, D. Pagnon, A. M. Pointu, M. Touzeau, M. Vialle, B. Mercey, and H. Murray, Plasma Sources Sci. Technol. 1, 175 (1992).

    Google Scholar 

  26. A. Granier, S. Pasquiers, C. Boisse-Laporte, R. Darchicourt, P. Leprince, and J. Marec, J. Phys. D: Appl. Phys. 22, 1487 (1989).

    Google Scholar 

  27. P. Plein, Thesis, RWTH Aachen (1988), p. 119.

  28. H. O. Pierson, Handbook of Chemical Vapor Deposition (CVD)—Principles, Technology and Applications, Noyes Publications (1992), p. 231.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayer, C., von Rohr, P.R. On the Correlation Between Deposition Rate and Process Parameters in Remote Plasma-Enhanced Chemical Vapor Deposition. Plasma Chemistry and Plasma Processing 18, 189–214 (1998). https://doi.org/10.1023/A:1021698331973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021698331973

Navigation