Skip to main content
Log in

Chemical composition and properties of films produced from hexamethyldisilazane by plasma-enhanced chemical vapor deposition

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Relationships between the chemical composition of the gas phase and the properties of SiC x N y H z films produced from hexamethyldisilazane by plasma-enhanced chemical vapor deposition have been studied. The plasma composition has been examined by optical emission spectroscopy. Thermal analysis of the films with simultaneous mass spectrometric detection of released gases has been performed. On the basis of the results and published data, mechanisms for the formation of films by plasma polymerization have been proposed and the film growth at a low plasma power and high reactor temperatures has been found to follow the heterogeneous mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann, P., Fainer, N., Kosinova, M., Baake, O., and Ensinger, W., Silicon Carbide—Materials, Processing and Applications in Electronic Devices, Mukherjee, M., Ed., Rijeka: InTech, 2011, ch. 21.

  2. Wrobel, A.M. and Kryszewski, M., Prog. Colloid Polym. Sci., 1991, vol. 85, p. 91.

    Article  CAS  Google Scholar 

  3. Hoffmann, P.S., Fainer, N.I., Baake, O., Kosinova, M.L., Rumyantsev, Y.M., Trunova, V.A., Klein, A., Pollakowski, B., Beckhoff, B., and Ensinger, W., Thin Solid Films, 2012, vol. 520, p. 5906.

    Article  CAS  Google Scholar 

  4. de Carvalho, A.T., Carvalho, R.A.M., Silva, M.L.P., and Demarquette, N.R., Mater. Res., 2006, vol. 9, p. 9.

    Article  Google Scholar 

  5. Chang, S.Y., Tsai, H.C., Chang, J.Y., Lin, S.J., and Chang, Y.S., Thin Solid Films, 2008, vol. 516, p. 5334.

    Article  CAS  Google Scholar 

  6. Shi, F.F., J. Macromol. Sci. C: Polym. Rev., 1996, vol. 36, p. 795.

    Article  Google Scholar 

  7. Kraus, F., Cruz, S., and Muller, J., Sensor Actuat. B.: Chem., 2003, vol. 88, p. 300.

    Article  CAS  Google Scholar 

  8. Silva, M.L.P., Tan, I.H., Filho, N.A.P., Galeazzo, E., and Jesus, D.P., Sensor Actuat. B.: Chem., 2003, vol. 91, p. 362.

    Article  Google Scholar 

  9. Wagner, N.J., Gerberich, W.W., and Heberlein, V.R., Surf. Coat. Technol., 2006, vol. 201, p. 4168.

    Article  CAS  Google Scholar 

  10. Fainer, N.I., Rumyantsev, Yu.M., Golubenko, A.N., Kosinova, M.L., and Kuznetsov, F.A., J. Cryst. Growth, 2003, vol. 248, p. 175.

    Article  CAS  Google Scholar 

  11. Wrobel, A.M., Klemberg, J.E., Wertheimer, M.R., and Schreiber, H.P., J. Macromol. Sci.-Chem. A, 1981, vol. 15, p. 197.

    Article  Google Scholar 

  12. Zhou, Y., Probst, D., Thissen, A., Kroke, E., Reidel, R., Hauser, R., Hoche, H., Broszeit, E., Kroll, P., and Stafast, H., J. Eur. Ceram. Soc., 2006, vol. 26, p. 1325.

    Article  CAS  Google Scholar 

  13. Wagner, N.J., Gerberich, W.W., and Heberlein, V.R., Plasma Process. Polym., 2007, no. 4, p. 946.

    Article  Google Scholar 

  14. Saloum, S. and Alkhaled, B., Acta Phys. Pol. A, 2011, vol. 119, p. 369.

    Article  CAS  Google Scholar 

  15. Kafrouni, W., Rouessac, V., Julbe, A., and Durand, J., Appl. Surf. Sci., 2010, vol. 257, p. 1196.

    Article  CAS  Google Scholar 

  16. Kobayashi, K., Yokoyama, H., and Endoh, M., Appl. Surf. Sci., 2008, vol. 254, p. 6222.

    Article  CAS  Google Scholar 

  17. Di Mundo, R., Palumbo, F., Fracassi, F., and d’Agostino, R., Plasma Process. Polym., 2009, no. 6, p. 506.

    Article  Google Scholar 

  18. Arold, M., Falk, F., Stafast, H., Probst, D., and Hoche, H., Surf. Coat. Technol., 2005, vol. 200, p. 372.

    Article  Google Scholar 

  19. Fanelli, F., d’Agostino, R., and Fracassi, F., Plasma Process. Polym., 2011, no. 8, p. 932.

    Article  CAS  Google Scholar 

  20. Fonseca, J.L.C., Tasker, S., Apperley, D.C., and Badyal, J.P.S., Macromolecules, 1996, vol. 29, p. 1705.

    Article  CAS  Google Scholar 

  21. Jamroz, P. and Zyrnicki, W., Vacuum, 2010, vol. 84, p. 940.

    Article  CAS  Google Scholar 

  22. Zhang, J.F., Bian, X.C., Chen, Q., Liu, F.P., and Liu, Z.W., Chin. Phys. Lett., 2009, vol. 26, p. 035203–14.

    Article  Google Scholar 

  23. Cui, J.H., Xu, J.L., Nie, Q.Y., Xu, G.H., and Ren, L.L., Sci. China Ser. G: Phys. Mech. Astron., 2008, vol. 51, p. 1892.

    Article  CAS  Google Scholar 

  24. Sharkey, A.G., Friedel, R.A., and Langer, S.H., Anal. Chem., 1957, vol. 29, p. 770.

    Article  CAS  Google Scholar 

  25. Silbiger, J., Lifshitz, C., Fuch, J., and Mandelbaun, A., J. Am. Chem. Soc., 1976, vol. 89, p. 4308.

    Article  Google Scholar 

  26. Tamas, J. and Miklos, P., Org. Mass Spectrom., 1975, vol. 10, p. 859.

    Article  CAS  Google Scholar 

  27. Belmahi, M., Bulou, S., Thouvenin, A., de Poucques, L., Hugon, R., le Brizoual, L., Miska. P., Geneve, D., Vasseur. J.-L., and Bougdira, J, Plasma Process. Polym., 2014, no. 11, p. 551.

    Article  CAS  Google Scholar 

  28. Zyn’, V.I., Potapov, V.K., and Shterenberg, A.M., him. Vys. Energ., 1986, vol. 20, no. 1, p. 76.

    Google Scholar 

  29. Shayapov, V.R., Rumyantsev, Yu.M., Dzyuba, A.A., Ayupov, B.M., and Fainer, N.I., Appl. Surf. Sci., 2013, vol. 265, p. 385.

    Article  CAS  Google Scholar 

  30. Shayapov, V.R., Rumyantsev, Yu.M., Fainer, N.I., and Ayupov, B.M., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 11, p. 1716.

    Article  CAS  Google Scholar 

  31. Shayapov, V.R., Nadolinnyi, V.A., Kozhemyachenko, S.I., Rumyantsev, Yu.M., and Fainer, N.I., J. Struct. Chem., 2015, vol. 56, no. 6, p. 1070.

    Article  CAS  Google Scholar 

  32. Fainer, N.I., Kosinova, M.L., Rumyantsev, Yu.M, Maksimovskii, E.A., Kuznetsov, F.A., Kesler, V.G., Kirienko, V.V., Han Bao-Shan, and Lu Cheng, Glass Phys. Chem., 2005, vol. 31, no. 4, p. 427.

    Article  CAS  Google Scholar 

  33. Fainer, N.I., Plekhanov, A.G., Golubenko, A.N., Rumyantsev, Yu.M., Rakhlin, V.I., Maximovski, E.A., and Shayapov, V.R., ECS J. Solid State Sci. Technol., 2015,vol. 4, p. 3153.

    Article  Google Scholar 

  34. Pearse, R. and Gaydon, A., The Identification of Molecular Spectra, London: Chapman and Hall, 1941.

    Google Scholar 

  35. Dieke, G.H., The Hydrogen Molecule Wavelength Tables of Gerhard Heinrich Dieke, Crosswhite, H.M., Ed., New York: Wiley–Interscience, 1972.

  36. Chen, L.Y. and Hong, F.C.N., Appl. Phys. Lett., 2003, vol. 83, p. 3526.

    Article  Google Scholar 

  37. Yasuda, H., Plasma Polymerization, Orlando: Academic, 1985.

    Google Scholar 

  38. Speight, J.G., Handbook of Industrial Hydrocarbon Processes, Amsterdam: Elsevier, 2011.

    Google Scholar 

  39. Gerstenberg, K.W. and Beyer, W., J. Appl. Phys., 1987, vol. 62, p. 1782.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Shayapov.

Additional information

Original Russian Text © V.R. Shayapov, Yu.M. Rumyantsev, P.E. Plyusnin, 2016, published in Khimiya Vysokikh Energii, 2016, Vol. 50, No. 3, pp. 221–226.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayapov, V.R., Rumyantsev, Y.M. & Plyusnin, P.E. Chemical composition and properties of films produced from hexamethyldisilazane by plasma-enhanced chemical vapor deposition. High Energy Chem 50, 213–218 (2016). https://doi.org/10.1134/S0018143916030127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143916030127

Keywords

Navigation