Skip to main content
Log in

A Mathematical Model of the Carbon Arc Reactor for Fullerene Synthesis

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A mathematical model of the carbon arc process for the synthesis of fullerenes (C 60 , C 70 ) is developed. The two-dimensional model solves for the velocities, temperature, and total concentration of carbon species. The net emission coefficient method is used for the radiation term. The carbon species conservation equations consider the evaporation of carbon from the anode, cathode surface deposition, and carbon condensation. The thermodynamic and transport properties are calculated as a function of temperature and carbon mass fraction, using the method of Chapman–Enskog. Erosion rates used by the model are determined experimentally. Calculated fields of the velocities, temperatures, carbon mass fraction and current intensity are presented. Comparison is made of the behavior of the arc at 1 and 4 mm interelectrode gaps, and between operation in argon and in helium. The results of simulations provide a justification for the higher yields observed in helium compared to the argon case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. W. Kroto, R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).

    Google Scholar 

  2. H. W. Kroto, MRS Bull. November 21–22, 1994.

  3. P. Bernier, La Recherche 22, 794 (1991).

    Google Scholar 

  4. M. A. Wilson, L. S. K. Pang, G. D. Willett, K. J. Fisher, and I. G. Dance, Carbon 30, 675 (1992).

    Google Scholar 

  5. L. S. K. Pang, A. M. Vassallo, and M. A. Wilson, Energy Fuels 6, 176 (1992).

    Google Scholar 

  6. R. M. Baum, C&EN, November 22, 1993, pp. 8–18.

  7. C. N. R. Rao and R. Seshadri, MRS Bull. November, 28–30, 1994.

  8. H. W. Kroto, J. P. Hare, A. Sarkar, K. Hsu, M. Terrones, and J. R. Abeysinghe, MRS Bull, November 51–55, 1994.

  9. L. S. K. Pang and M. A. Wilson, Energy Fuels 7, 436 (1993).

    Google Scholar 

  10. S. Ijima, MRS Bull., November 43–49, 1994.

  11. R. F. Curl, Appl. Supercond. 1, 869 (1993).

    Google Scholar 

  12. L. Laska, L. Juha, J. Krasa, V. Hamplova, and L. Soukup, Czech. J. Phys. 43, 193 (1993).

    Google Scholar 

  13. C. L. Fields, J. R. Pitts, M. J. Hale, C. Bingham, A. Lewandowski, and D. E. King, J. Phys. Chem. 97, 8701 (1993).

    Google Scholar 

  14. L. P. F. Chibante, A. Thess, J. M. Alford, M. D. Diener, R. E. Smalley, J. Phys. Chem. 97, 8696 (1993).

    Google Scholar 

  15. R. Taylor, J. P. Hare, A. Abdul-Sada, and H. W. Kroto, J. Chem. Soc., Chem. Commun. 20, 1423 (1990).

    Google Scholar 

  16. G. Peters and M. Jansen, Angew. Chem. Int. Ed. Engl. 31, 223 (1992).

    Google Scholar 

  17. T. Sone, H. Akatsuka, and M. Suzuki, Plasma Sources Sci. Technol. 2, 46 (1993).

    Google Scholar 

  18. K.-I. Yoshie, S. Kasuya, K. Eguchi, and T. Yoshida, Appl. Phys. Lett. 61, 2782 (1992).

    Google Scholar 

  19. T. Ikegami and O. Matsumoto, Proc. 12th Int. Symp. Plasma Chem., August 21–25, Minneapolis, Minnesota, 1995, p. 1189.

  20. T. Alexakis, Y. S. Tsantrizos, J.-L. Meunier, and P. G. Tzantrizos, Proc. 12th Int. Symp. Plasma Chem., August 21–25, Minneapolis, Minnesota, 1995, pp. 1177–1182.

  21. R. F. Bunshah, S. Jou, S. Prakash, H. J. Doerr, L. Isaacs, A. Wehrsig, C. Yeretzian, H. Cynn, and F. Diederich, J. Phys. Chem. 96, 6866 (1992).

    Google Scholar 

  22. J. B. Howard, 24th Int. Symp. (Int.) on Combustion, 1992, p. 182.

  23. J. B. Howard, A. L. Lafleur, Y. Marakowski, S. Mitra, C. J. Pope, and T. K. Yadav, Carbon 30, 1183–1201 (1992).

    Google Scholar 

  24. J. T. McKinnon and W. L. Bell, Combust. Flame 88, 102 (1992).

    Google Scholar 

  25. T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley, J. Phys. Chem. 99, 10694 (1995).

    Google Scholar 

  26. A. Huczko, H. Lange and P. Byszewski, Proc. 12th Int. Symp. Plasma Chem. (ISPC-12), August 21–25, Minneapolis, Minnesota, 1995, p. 1183.

  27. H. Lange, P. Byszewski, A. Huczko, P. Ukalski, Proc. 3rd Eur. Conf. on Thermal Plasma Proc., 1994, pp. 36–43.

  28. A. Huczko, H. Lange, A. Resztak, and P. Byszewski, High Temp. Chem. Process. 4, 125 (1995).

    Google Scholar 

  29. R. E. Haufler, J. Conceicao, L. P. F. Chibante, Y. Chai, N. E. Byrne, S. Flanagan, M. M. Haley, S. C. O'Brien, C. Pan, Z. Xiao, W. E. Billups, M. A Ciufolini, R. H. Hauge, J. L. Margrave, J. L. Wilson, R. F. Curl, and R. E. Smalley, J. Phys. Chem. 94, 8634 (1990).

    Google Scholar 

  30. C. N. R. Rao, T. Pradeep, R. Seshadri, R. Nagarajan, V. N. Murthy, G. N. Subbanna, F. D'Souza, V. Krishnan, G. A. Nagannagowda, N. R. Suryaprakash, C. L. Khetrapal, and S. V. Bhat, Indian J. Chem. 31 A&B, F5 (1992).

    Google Scholar 

  31. D. H. Parker, P. Wurz, K. Chatterjee, K. R. Lykke, J. E. Hunt, M. J. Pellin, J. C. Hemminger, D. M. Gruen, and L. M. Stock, J. Am. Chem. Soc. 113, 7499 (1991).

    Google Scholar 

  32. J. P. Hare, H. W. Kroto, and R. Taylor, Chem. Phys. Lett. 177, 394 (1991).

    Google Scholar 

  33. Y. Saito, M. Inagaki, H. Shinohara, H. Nagashima, M. Ohkohchi, and Y. Ando, Chem. Phys. Lett. 200, 643 (1992).

    Google Scholar 

  34. H. Matsuo, H. Takikawa, H. Ijima, T. Sakakibara Proc. 11th Conf. on Gas. Discharges and Their Applications, September 11–15, Tokyo, Japan, 1995 (pp. 1430–1433

  35. T. Mieno, Proc. 22nd Int. Conf. on Phenomena in Ionized Gases (ICPIG), Hoboken, New Jersey, Vol. 2 (1995), pp. 17–18.

    Google Scholar 

  36. T. Mieno, T. Dewa, and A. Sakurai, Proc. 22nd Int. Conf. on Phenomena in Ionized Gases (ICPIG), Hoboken, New Jersey, Vol. 2 (1995), pp. 88–89.

    Google Scholar 

  37. Y. Ando and S. Ijima, Jpn. J. Appl. Phys. 32, L107 (1993).

    Google Scholar 

  38. D. T. Colbert, J. Zhang, S. M. McClure, P. Nikolaev, Z. Chen, J. H. Hafner, D. W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Ringley, and R. E. Smalley, Science 266, 1218 (1994).

    Google Scholar 

  39. P. Byszewski, P. Dluzewski, and R. Didusko, J. Mater. Res. 8, 118 (1993).

    Google Scholar 

  40. M. Ohkohchi, Y. Ando, S. Bandow, and Y. Saito, Jpn. J. Appl. Phys. 32, L1248 (1993).

    Google Scholar 

  41. J. Pousse, B. Chervy, J.-F. Bilodeau, and A. Gleizes, Plasma Chem. Plasma Process. 16, 605 (1996).

    Google Scholar 

  42. B. Chervy, A. Gleizes, and M. Razafinimanana, J. Phys. D.: Appl. Phys. 27, 1193 (1994).

    Google Scholar 

  43. B. Chervy, “Calcul des propriétés de transport et étude du pouvoir de coupure des mélanges hexafluorure de soufre (SF6)-fluorure de carbone (CF4 ou C2F6) et hexafluorure de soufrevapeurs de cuivre,” Doctoral thesis, Université Paul-Sabatier, order No. 1997, Toulouse, France (1995).

    Google Scholar 

  44. S. Chapman and T. Cowling The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, New York (1965).

    Google Scholar 

  45. B. Pateyron, M.-F. Elchinger, G. Delluc, and P. Fauchais, Plasma Chem. Plasma Process. 12, 421 (1992).

    Google Scholar 

  46. R. S. Devoto and C. P. Li, J. Plasma Phys. 2, 17 (1968).

    Google Scholar 

  47. R. S. Devoto, Phys. Fluids 16, 616 (1973).

    Google Scholar 

  48. C. Gorse “Contribution au calcul des propriétés de transport des plasmas des mélanges Ar-H2 et Ar N2,” Doctoral thesis, Université de Limoges, France (1975).

    Google Scholar 

  49. J.-T. Mostaghimi and E. Pfender, Plasma Chem. Plasma Process. 4, 129 (1984).

    Google Scholar 

  50. CRC Handbook of Chemistry and Physics, 75th edition, R. C. Weast, ed., The Chemical Rubber Co., Cleveland, Ohio, (1994–1995).

    Google Scholar 

  51. R. H. Perry and D. Green, Chemical Engineer's Handbook, McGraw-Hill, New York (1984).

    Google Scholar 

  52. D. E. Gray, Editor, American Institute of Physics Handbook, McGraw-Hill, New York (1972).

    Google Scholar 

  53. A. N. Nesmeyanov and R. Gary, Vapor Pressure of the Chemical Elements, Elsevier, New York (1963).

    Google Scholar 

  54. J. C. Slattery and R. B. Bird, AICHE J. 4, 137 (1958).

    Google Scholar 

  55. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York (1980).

    Google Scholar 

  56. J. J. Gonzalez, A. Gleizes, P. Proulx, and M. Boulos, J. Appl. Phys. 74, 3065 (1993).

    Google Scholar 

  57. J. Mentel, Appl. Phys. 14, 269 (1997).

    Google Scholar 

  58. J. T. McKinnon, J. Phys. Chem. 95, 8941 (1991).

    Google Scholar 

  59. M. I. Boulos, P. Fauchais, and E. Pfender, Thermal plasmas: Fundamentals and Applications. Plenum Press, New York (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilodeau, JF., Pousse, J. & Gleizes, A. A Mathematical Model of the Carbon Arc Reactor for Fullerene Synthesis. Plasma Chemistry and Plasma Processing 18, 285–303 (1998). https://doi.org/10.1023/A:1021658717860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021658717860

Navigation