Skip to main content
Log in

Diamond Deposition on Substrates with Different Geometries in a Thermal Plasma Reactor

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effects of process parameters on diamond film deposition have been considered in an atmospheric-pressure dc thermal plasma jet reactor. Two different precursor injection systems have been evaluated, counterflow and side injection. The precursor flow rate using ethanol has been found to strongly affect crystal size as well as orientation of crystal growth planes. Further, crystal size on sharp edges has been found to be up to five times larger than on planar surfaces. The effects of substrate geometry on the morphology and area of deposited diamond have been investigated as well. The results of this study show that dc thermal plasma jets can provide high diamond deposition rates, for example on wires and drills, although crystal size and film thickness show substantial variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Z. P. Lu, J. Heberlein, and E. Pfender, Plasma Chem. Plasma Process. 12, 35 (1992).

    Google Scholar 

  2. M. Kawarada, K. Kurihara, K. Sasaki, A. Teshima, and K. Koshimo, Proc. Soc. Photo. Opt. Instrum. Eng. 1146, 28 (1989).

    Google Scholar 

  3. E. Pfender, Q. Y. Han, T. W. Or, Z. P. Lu, and J. Heberlein, Diamond Relat. Mater. 1, 127 (1992).

    Google Scholar 

  4. R. L. Woodin, 4th Annual Diamond Technology Workshop, Wisconsin (1993).

  5. M. H. Loh and M. A. Cappeli, Proc. 3rd Int. Symp. on Diamond Materials, (J. P. Dismukes and K. V. Ravi, eds.), The Electrochemical Society, Inc., New Jersey (1993), p. 17.

    Google Scholar 

  6. S. Matsumoto, M. Hino, and T. Kobayashi, Appl. Phys. Lett. 51, 737 (1987).

    Google Scholar 

  7. L. Bardos, S. Berg, T. Nyberg, H. Barankova, and C. Nender, Diamond Relat. Mater. 2, 517 (1993)

    Google Scholar 

  8. K. Suzuki, A. Sawabe, and T. Inuzuka, Jpn. J. Appl. Phys. 29, 153 (1990).

    Google Scholar 

  9. K. R. Stalder and R. L. Sharpless, J. Appl. Phys. 68, 6187 (1990).

    Google Scholar 

  10. M. Asmann, Master Thesis, University of Minnesota (1996).

  11. A. Gicquel, C. Heau, D. Fabre, and J. Perriere, Diamond Related Mater. 1, 776 (1992).

    Google Scholar 

  12. P. Bou, L. Vandenbulcke, and R. Herbin, Diamond Relat. Mater. 1, 933 (1992).

    Google Scholar 

  13. D. G. Goodwin, Appl. Phys. Lett. 59, 277 (1991).

    Google Scholar 

  14. L. K. Bigelow, N. M. Henderson, and R. L. Woodin, Proc. 2nd Int. Conf. New Diamond Sci. Technol. (R. Messier and J. T. Glass, eds.), Materials Research Soc., Pittsburg, (1991), p. 251.

    Google Scholar 

  15. F. M. Creio and W. A. Weimer, Rev. Sci. Instrum. 63, 2065 (1992).

    Google Scholar 

  16. M. E. Coltrin and D. S. Dandy, J. Appl. Phys. 74, 5803 (1993).

    Google Scholar 

  17. B. W. Yu and S. L. Girshick, J. Appl. Phys. 75, 3914 (1994).

    Google Scholar 

  18. D. Kolman, J. Heberlein, E. Pfender, and R. Young, Plasma Chem. Plasma Process. 16, 575 (1996).

    Google Scholar 

  19. F. M. White, Viscous Fluid Flow, McGraw-Hill, New York (1974).

    Google Scholar 

  20. B. S. Massey, Mechanics of Fluids, 5th edition, Van Nostrand Reinhold, England (1983).

    Google Scholar 

  21. P. Bou, J. C. Boettner, and L. Vandelbulcke, Jpn. Appl. Phys. 31, 1505 (1992).

    Google Scholar 

  22. W. L. Hsu, Appl. Phys. Lett. 59, 1427 (1991).

    Google Scholar 

  23. J. A. Mucha, D. L. Flamm, and D. E. Ibbotson, J. Appl. Phys. 65, 3448 (1989).

    Google Scholar 

  24. L. S. Schafer, U. Bringman, C. P. Klages, U. Meier, and K. Kohse-Hoinghaus, Proc. of the NATO Advanced Study Institute on Diamond and Diamond-like Films and Coatings (R. E. Clausing, L. L. Horton, J. C. Angus, and P. Koidl, eds.), NATO ASI Series B: Physics Vol. 266, New York (1991), p. 643.

  25. F. C. Celii, P. Pehrsson, H. T. Wang, and J. E. Butler, Appl. Phys. Lett. 52, 2043 (1988).

    Google Scholar 

  26. Wei Zhu and B. Stoner, Proc. IEE 79, 621 (1991).

    Google Scholar 

  27. S. L. Girshick, C. Li, B. W. Yu, and H. Han, Plasma Chem. Plasma Process. 13, 169 (1993).

    Google Scholar 

  28. A Van der Drift, Philips Res. Rep. 2, 267 (1967).

    Google Scholar 

  29. V. J. Trava-Airoldi, E. J. Corat, A. F. V. Pena, N. F. Leite, V. Baranauskas, and M. C. Salvadori, Diamond Relat. Mater. 4, 1255 (1995).

    Google Scholar 

  30. D. Kolman, J. Heberlein, and E. Pfender, Plasma Chem. Plasma Process., 18, 73 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, C.F.M., Asmann, M., Pfender, E. et al. Diamond Deposition on Substrates with Different Geometries in a Thermal Plasma Reactor. Plasma Chemistry and Plasma Processing 18, 305–324 (1998). https://doi.org/10.1023/A:1021610801931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021610801931

Navigation