Skip to main content
Log in

Atmospheric-Pressure Microwave Plasma Torch for CVD Technology of Diamond Synthesis

  • ION AND PLASMA SOURCES
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An electrodeless microwave jet plasma source is considered, and its various applications in the technology of chemical vapor deposition of diamond films and dimension increasing of small diamond single crystals synthesized at high pressures and temperatures are discussed. The plasma jet is ignited in an atmospheric-pressure gas (argon) flow with hydrogen and methane additives. The operation of the microwave jet reactor is described, and the plasma characteristics measured using emission spectroscopy are presented. The brightly glowing atmospheric-pressure plasma jet is ignited and stably burns at a microwave power of ≤1 kW supplied from a microwave oven magnetron. The specific microwave power density absorbed by the compact plasma jet (≤104 W/cm3) is comparable with that absorbed by a dc arc. The growth rate of the polycrystalline diamond layer amounts to 40 µm/h. The process of film deposition on the substrate can be controlled by scanning the substrate surface with the jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. V. Derjaguin, D. V. Fedoseev, V. M. Lukyanovich, B. V. Spitzin, V. A. Ryabov, and A. V. Lavrentyev, J. Crystal Growth 2, 380 (1968).

    Article  ADS  Google Scholar 

  2. Diamond Films Handbook, Ed. By J. Asmussen and D. Reinhard (CRC Press, Boca Raton, FL, 2002).

    Google Scholar 

  3. S. Matsumoto, M. Kamo, and N. Setaka, Jpn. J. Appl. Phys. 21, L183 (1982).

    Article  Google Scholar 

  4. Y. Matsui, Jpn. J. Appl. Phys. 29, 155 (1990).

    Google Scholar 

  5. K. Kurihara, K.-I. Sasaki, and M. Kawarada, Fujitsu Sci. Tech. J 25, 44 (1989).

    Google Scholar 

  6. J. M. Olson and M. J. Dawes, J. Mater. Res. 11, 1765 (1996).

    Article  ADS  Google Scholar 

  7. S. K. Baldwin, T. G. Owano, and C. H. Kruger, Plasma Chem. Plasma Process. 14, 383 (1994).

    Article  Google Scholar 

  8. F. Silva, K. Hassouni, X. Bonnin, and A. Gicquel, J. Phys. Condens. Matter 21, 364202 (2009).

    Article  Google Scholar 

  9. M. M. Besen, E. Sevillano, and D. K. Smith, US Patent No. 5.501.740, March 26, 1996.

  10. V. I. Konov, V. G. Ral’chenko, K. F. Sergeichev, V. B. Khavaev, S. K. Vartapetov, and V. V. Atezhev, RF Patent No. 2299929, Application No. 2005125464, Prority from August 11, 2005.

  11. A. P. Bolshakov, V. I. Konov, A. M. Prokhorov, and S. A. Uglov, Diamond Relat. Mater. 10, 1559 (2001).

    Article  ADS  Google Scholar 

  12. A. L. Vikharev, A. M. Gorbachev, A. V. Kozlov, D. B. Radishev, and A. B. Muchnikov, Diamond Relat. Mater. 17, 1055 (2008).

    Article  ADS  Google Scholar 

  13. M. C. Garcia, A. Rodero, and A. Sola, Spectrochim. Acta B 55, 1733 (2000).

    Article  ADS  Google Scholar 

  14. D. V. Vlasov, K. F. Sergeichev, and I. A. Sychev, Plasma Phys. Rep. 28, 444 (2002).

    Article  ADS  Google Scholar 

  15. Y. Mitsuda, T. Yoshida, and K. Akashi, Rev. Sci. Instrum. 60, 249 (1989).

    Article  ADS  Google Scholar 

  16. E. A. H. Timmermans, I. A. J. Thomas, J. Jonkers, E. Hartgers, J. A. M. van der Mullen, and D. C. Schram, Fresenius J. Anal. Chem 362, 440 (1998).

    Article  Google Scholar 

  17. https://physics.nist.gov/PhysRefData/ASD/lines_form.html.

  18. A. A. Letunov, N. N. Skvortsova, N. A. Lukina, K. F. Sergeichev, and N. S. Petrovskii, VIII International Symposium on Theoretical and Applied Plasma Chemistry, Ivanovo, 2018, Book of Abstracts.

  19. S. Pellerin, K. Musiol, O. Motret, B. Pokrzywka, and J. Chapelle, J. Phys. D 29, 2850 (1996).

    Article  ADS  Google Scholar 

  20. E. V. Bushuev, V. Yu. Yurov, A. P. Bolshakov, V. G. Ralchenko, A. A. Khomich, I. A. Antonova, E. E. Ashkinazi, V. A. Shershulin, V. P. Pashinin, and V. I. Konov, Diamond Relat. Mater. 72, 61 (2017).

    Article  ADS  Google Scholar 

  21. C. Rond, S. Hamann, M. Wartel, G. Lombardi, A. Gicquel, and J. Röpcke, J. Appl. Phys. 116, 093301 (2014).

    Article  ADS  Google Scholar 

  22. P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Lins, Plasma Sources Sci. Technol. 23, 023001 (2014).

    Article  ADS  Google Scholar 

  23. J. Torres, J. M. Palomares, A. Sola, J. J. A. M. van der Mullen, and A. Gamero, J. Phys. D 40, 5929 (2007).

    Article  ADS  Google Scholar 

  24. H. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

    Google Scholar 

  25. K. F. Sergeichev, N. A. Lukina, A. P. Bol’shakov, V. G. Ral’chenko, N. R. Arutyunyan, S. N. Bokova, and V. I. Konov, Prikl. Fiz., No. 6, 39 (2008).

  26. K. F. Sergeichev, N. A. Lukina, A. P. Bolshakov, V. G. Ralchenko, N. R. Arutyunyan, I. I. Vlasov, Plasma Phys. Rep. 36, 1272 (2010).

    Article  ADS  Google Scholar 

  27. A. M. Anpilov, N. R. Arutyunyan, E. M. Barkhudarov, I. V. Belashov, A. P. Bolshakov, M. A. Borisenko, V. A. Ivanov, I. A. Kossyi, N. A. Lukina, Ph. O. Milovich, V. S. Sedov, M. A. Abakumov, and K. F. Sergeichev, J. Phys. Conf. Ser. 1094, 012030 (2018).

    Article  Google Scholar 

  28. K. F. Sergeichev and N. A. Lukina, Plasma Phys. Rep. 37, 1224 (2011).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.A. Letunov for his help in measurements of the discharge plasma characteristics and to D.I. Svetogorov for providing us with an HPHT diamond single crystal used in experiments on the epitaxial crystal growth.

Funding

This work was supported by the Prokhorov General Physics institute of the Russian Academy of Sciences within the scope of the research program “Fundamentals of plasma, microwave, and beam technologies” (state contract no. 0024-2018-0046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Sergeichev.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeichev, K.F., Lukina, N.A. & Arutyunyan, N.R. Atmospheric-Pressure Microwave Plasma Torch for CVD Technology of Diamond Synthesis. Plasma Phys. Rep. 45, 551–560 (2019). https://doi.org/10.1134/S1063780X19060096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19060096

Navigation