Skip to main content
Log in

Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Morphological stasis has long been regarded as one of the most challenging problems in evolutionary biology. This study focused on the copepod species complex, Eurytemora affinis, as a model system to determine pattern and degree of morphological stasis. This study revealed discordant rates of morphological differentiation, molecular evolution, and reproductive isolation, where speciation was accompanied by lack of morphological differentiation in secondary sex characters. Comparisons were made among phylogenies based on morphometrics, nuclear (allozyme) loci, and mitochondrial DNA (mtDNA) sequences from cytochrome oxidase I, for a total of 43 populations within the complex. These systematic relationships were also compared to patterns of reproductive isolation. In addition, genetic subdivision of nuclear molecular (allozyme) markers (G ST) and quantitative (morphological) characters (Q ST) were determined to infer evolutionary forces driving morphological differentiation. The morphometric phylogeny revealed that all clades, excluding the European clade, were morphologically undifferentiated and formed a polytomy (multifurcation). Morphometric distances were not correlated with mtDNA distances, or with patterns of reproductive isolation. In contrast, nuclear and mtDNA phylogenies were mostly congruent. Reproductive isolation proved to be the most sensitive indicator of speciation, given that two genetically and morphologically proximate populations showed evidence of hybrid breakdown. Quantitative genetic (morphological) subdivision (Q ST = 0.162) was lower than nuclear genetic subdivision (G ST = 0.617) for four laboratory-reared North American populations, indicating retarded evolution of morphological characters. This result contrasts with most other species, where Q ST typically exceeds G ST as a result of directional selection. Thus, in all but the European populations, evolution of the secondary sex characters was marked by morphological stasis, even between reproductively-isolated populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brodie, E. D. I. & T. J. Garland, 1993. Quantitative genetics of snake populations. In Seigel, R. A. & J. T. Collins (eds), Snakes: Ecology and Behavior. McGraw Hill, New York: 315-362

    Google Scholar 

  • Bucklin, A., B. W. Frost & T. D. Kocher, 1995. Molecular systematics of six Calanus and three Metridia species (Calanoida: Copepoda). Mar. Biol. 121: 655-664.

    Google Scholar 

  • Burton, R. S., 1990. Hybrid breakdown in developmental time in the copepod Tigriopus californicus. Evolution 44: 1814-1822.

    Google Scholar 

  • Burton, R. S., 1998. Intraspecific phylogeography across the Point Conception biogeographic boundary. Evolution 52: 734-745.

    Google Scholar 

  • Busch, A. & U. Brenning, 1992. Studies on the status of Eurytemora affinis (Poppe, 1880) (Copepoda, Calanoida). Crustaceana 62: 13-38.

    Google Scholar 

  • Campbell, N. A. & W. R. Atchley, 1981. The geometry of canonical variate analysis. Syst. Zool. 30: 268-280.

    Google Scholar 

  • Cavalli-Sforza, L. L. & A. F. W. Edwards, 1967. Phylogenetic analysis and estimation procedures. Evolution 21: 550-570.

    Google Scholar 

  • Charlesworth, B., R. Lande & M. Slatkin, 1982. A neo-Darwinian commentary on Macroevolution. Evolution 36: 474-498.

    Google Scholar 

  • Cheetham, A. H., J. B. C. Jackson & L.-A. C. Hayek, 1995. Quantitative genetics of bryozoan phenotypic evolution: III. Phenotypic plasticity and the maintenance of genetic variation. Evolution 49: 290-296.

    Google Scholar 

  • Cheetham, A. H., J. B. C. Jackson & L. A. C. Hayek, 1994. Quantitative genetics of bryozoan phenotypic evolution: II. Analysis of selection and random change in fossil species using reconstructed genetic parameters. Evolution 48: 360-375.

    Google Scholar 

  • Chiba, S., 1998. A mathematical model for long-term patterns of evolution: Effects of environmental stability and instability on macroevolutionary patterns and mass extinctions. Paleobiology 24: 336-348.

    Google Scholar 

  • Colbourne, J. K. & P. D. N. Hebert, 1996. The systematics of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach. Phil. Trans. R. Soc. Lond. B 351: 349-360.

    Google Scholar 

  • Cracraft, J., 1983. Species concepts and speciation analysis. In Johnston, R. F. (ed.), Current Ornithology. Plenum Press, New York: 159-187

    Google Scholar 

  • Darwin, C., 1872. The Origin of Species, 6th Edition. John Murray, London.

    Google Scholar 

  • Doall, M. H., S. P. Colin, J. R. Strickler & J. Yen, 1998. Locating a mate in 3D: The case of Temora longicornis. Phil. Trans. Royal. Soc. Lond. B 353: 681-689.

    Google Scholar 

  • Dobzhansky, T., 1937. Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Dohm, M. R., 2002. Repeatability estimates do not always set an upper limit to heritability. Funct. Ecol. 16: 273-280.

    Google Scholar 

  • Edmands, S., 1999. Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53: 1757-1768.

    Google Scholar 

  • Ellner, S. & N. G. Hairston, 1994. Role of overlapping generations in maintaining genetic variation in a fluctuating environment. Am. Nat. 143: 403-417.

    Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

    Google Scholar 

  • Felsenstein, J., 1988. Phylogenies and quantitative characters. Ann. Rev. Ecol. Syst. 19: 445-471.

    Google Scholar 

  • Felsenstein, J., 1991. PHYLIP: Phylogeny Inference Package (version 3.5). Dept. of Genetics, Univ. of Washington, Seattle, WA.

    Google Scholar 

  • Frost, B. W., 1974. Calanus marshallae, a new species of calanoid copepod closely allied to the sibling species C. finmarchicus and C. glacialis. Mar. Biol. 26: 77-99.

    Google Scholar 

  • Frost, B. W., 1989. A taxonomy of the marine calanoid copepod genus Pseudocalanus. Can. J. Zool. 67: 525-551.

    Google Scholar 

  • Ganz, H. H. & R. S. Burton, 1995. Genetic differentiation and reproductive incompatibility among Baja California populations of the copepod Tigriopus californicus. Mar. Biol. 123: 821-827.

    Google Scholar 

  • Gould, S. J., 1980. Is a new and general theory of evolution emerging? Paleobiology 6: 119-130.

    Google Scholar 

  • Gould, S. J., 1982. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution in R. Milkman, ed., Perspectives on Evolution. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Gould, S. J. & N. Eldredge, 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3: 115-151.

    Google Scholar 

  • Hairston, N. G. J., 1996. Zooplankton egg banks as biotic reservoirs in changing environments. Limnol. Oceanogr. 41: 1087-1092.

    Google Scholar 

  • Hebert, P. D. N. & M. J. Beaton, 1993. Methodologies for allozyme analysis using cellulose acetate electrophoresis. Helena Laboratories, Beaumont, TX.

    Google Scholar 

  • Hoekstra, H. E., J. M. Hoekstra, D. Berrigan, S. N. Vignieri, A. Hoang, C. E. Hill, P. Beerli & J. G. Kingsolver, 2001. Strength and tempo of directional selection in the wild. Proc. Natl. Acad. Sci. USA 98: 9157-9160.

    Google Scholar 

  • Hoelzel, A. R. & A. Green, 1992. Analysis of population-level variation by sequencing PCR-amplified DNA. In Hoelzel, A. R. (ed.), Molecular Genetic Analysis of Populations: A Practical Approach. Oxford University Press, New York: 159-187.

    Google Scholar 

  • Jackson, J. B. C. & A. H. Cheetham, 1990. Evolutionary signi-ficance of morphospecies: A test with cheilostome Bryozoa. Science 248: 579-583.

    Google Scholar 

  • Jackson, J. B. C. & A. H. Cheetham, 1994. Phylogeny reconstruction and the tempo of speciation in cheilostome bryozoa. Paleobiology 20: 407-423.

    Google Scholar 

  • Katona, S. K., 1973. Evidence for sex pheromones in planktonic copepods. Limnol. Oceanogr. 18: 574-583.

    Google Scholar 

  • Kawecki, T. J., 2000. The evolution of genetic canalization under fluctuating selection. Evolution 54: 1-12.

    Google Scholar 

  • King, J. L. & R. Hanner, 1998. Cryptic species in a ‘living fossil’ lineage: Taxonomic and phylogenetic relationships within the genus Lepidurus (Crustacea: Notostraca) in North America. Mol. Phyl. Evol. 10: 23-36.

    Google Scholar 

  • Knowlton, N., 1993. Sibling species in the sea. Annu. Rev. Ecol. Syst. 24: 189-216.

    Google Scholar 

  • Knowlton, N., 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420: 73-90.

    Google Scholar 

  • Knowlton, N. & L. A. Weigt, 1998. New dates and new rates for divergence across the isthmus of Panama. Proc. R. Soc. Lond. B 265: 2257-2263.

    Google Scholar 

  • Lee, C. E., 1999. Rapid and repeated invasions of fresh water by the saltwater copepod Eurytemora affinis. Evolution 53: 1423-1434.

    Google Scholar 

  • Lee, C. E., 2000. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate ‘populations’. Evolution 54: 2014-2027.

    Google Scholar 

  • Lee, C. E., 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17: 386-391.

    Google Scholar 

  • Lee, C. E. & M. A. Bell, 1999. Causes and consequences of recent freshwater invasions by saltwater animals. Trends Ecol. Evol. 14: 284-288.

    Google Scholar 

  • Lee, C. E. & C. H. Petersen, 2002. Genotype-by-environment interaction for salinity tolerance in the freshwater invading copepod Eurytemora affinis. Phys. Biochem. Zool. 75: 335-344.

    Google Scholar 

  • Legendre, P. & A. Vaudor, 1991. The R Package: Multidimensional Analysis, Spatial Analysis. University of Montreal, Montreal.

    Google Scholar 

  • Lieberman, B. S. & S. Dudgeon, 1996. An evaluation of stabilizing selection as a mechanism for stasis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127: 229-238.

    Google Scholar 

  • Lynch, M., M. Pfrender, K. Spitze, N. Lehman, J. Hicks, D. Allen, L. Latta, M. Ottene, F. Bogue & J. Colbourne, 1999. The quantitative and molecular genetic architecture of a subdivided species. Evolution 53: 100-110.

    Google Scholar 

  • Lynch, M. & K. Spitze, 1994. Evolutionary genetics of Daphnia. In Real, L. A. (ed.), Ecological Genetics. Princeton University Press, Princeton: 109-128.

    Google Scholar 

  • Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220.

    Google Scholar 

  • Mayr, E., 1963. Animal Species and Evolution. Harvard University Press, Cambridge.

    Google Scholar 

  • McKinnon, A. D., W. J. Kimmerer & J. A. H. Benzie, 1992. Sympatric sibling species within the genus Acartia (Copepoda: Calanoida): a case study fromWesternport and Port Phillip Bays, Australia. J. Crust. Biol. 12: 239-259.

    Google Scholar 

  • Merilä, J. & P. Crnokrak, 2001. Comparison of genetic differentiation at marker loci and quantitative traits. J. Evol. Biol. 14: 892-903.

    Google Scholar 

  • Müller, J., E. Partsch & A. Link, 2000. Differentiation in morphology and habitat partitioning of genetically characterized Gammarus fossarum forms (Amphipoda) across a contact zone. Biol. J. Linnean Soc. 69: 41-53.

    Google Scholar 

  • Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70: 3321-3323.

    Google Scholar 

  • Nijhout, H. F. & D. J. Emlen, 1998. Competition among body parts in the development and evolution of insect morphology. Proc. Nat. Acad. Sci. USA 95: 3685-3689.

    Google Scholar 

  • Orsi, J., 2001. Eurytemora affinis is introduced. IEP Newsletter 14: 12.

    Google Scholar 

  • Ota, T., 1993. DISPAN: Genetic Distance and Phylogenetic Analysis. Institute ofMolecular Evolutionary Genetics, Pennsylvania State University.

    Google Scholar 

  • Palmer, A. R., S. D. Gayron & D. S. Woodruff, 1990. Reproductive, morphological, and genetic evidence for two cryptic species of northeastern Pacific Nucella. Veliger 33: 325-338.

    Google Scholar 

  • Poppe, S. A., 1880. Über eine neue Art der Calaniden-Gattung Temora, Baird. Abhandlg. Naturw. Verein Bremen 7: 55-60.

    Google Scholar 

  • Rempe, U. & E. E. Weber, 1972. An illustration of the principal ideas of MANOVA. Biometrics 28: 235-238.

    Google Scholar 

  • Schmeil, O., 1896. Deutschlands freilebende Süsswasser-Copepoden. Erwin Nägele, Stuttgart.

    Google Scholar 

  • Schubart, C. D., R. Diesel & S. B. Hedges, 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393: 363-365.

    Google Scholar 

  • Sevigny, J.-M., I. A. Mclaren & B. W. Frost, 1989. Discrimination among and variation within species of Pseudocalanus based on the GPI locus. Mar. Biol. 102: 321-328.

    Google Scholar 

  • Sheldon, P. R., 1996. Plus ça change — a model for stasis and evolution in different environments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127: 209-227.

    Google Scholar 

  • Simpson, G. G., 1944. Tempo and Mode in Evolution. Columbia University Press, New York.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W. H. Freeman and Company, New York.

    Google Scholar 

  • Spitze, K., 1993. Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135: 367-374.

    Google Scholar 

  • Taylor, D. J., P. D. N. Hebert & J. K. Colbourne, 1996. Phylogenetics and evolution of the Daphnia longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation. Mol. Phyl. Evol. 5: 495-510.

    Google Scholar 

  • Waddington, C. H., 1956. Principles of Embryology. George Allen & Unwin., London.

    Google Scholar 

  • Wake, D. B., G. Roth & M. H. Wake, 1983. On the problem of stasis in organismal evolution. J. Theor. Biol. 101: 211-224.

    Google Scholar 

  • Weissburg, M. J., M. H. Doall & J. Yen, 1998. Following the invisible trail: Kinematic analysis of mate-tracking in the copepod Temora longicornis. Phil. Trans. Royal. Soc. Lond. B 353: 701-712.

    Google Scholar 

  • Yen, J., M. J. Weissburg & M. H. Doall, 1998. The fluid physics of signal perception by mate-tracking copepods. Phil. Trans. Royal. Soc. Lond. B 353: 787-804.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.E., Frost, B.W. Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae). Hydrobiologia 480, 111–128 (2002). https://doi.org/10.1023/A:1021293203512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021293203512

Navigation