Skip to main content
Log in

Electrosorption of sodium cellulose sulfates with different substitution patterns

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Various types of sodium cellulose sulfate (SCS), dissolved in a 1M LiCl solution, were investigated by alternating current (AC)polarography. The SCS samples differed in the degree of substitution (DS), thedistribution of substituents within the anhydroglucose unit (AGU), and alongthechain, due to the method of synthesis. The goal was to study theelectrosorptionbehavior, characterized by the shape of the desorption wave in the polarogram,as a function of the chemical structure of the SCS samples. The shape of thedesorption wave reflects domains of different substitution. A superimpositionofparameters like DS and pattern of substitution on the electrosorption behaviorwas observed. The AC polarography method described can be used as a tool todistinguish between an even or uneven distribution of substituents along thecellulose chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsleben H., Jehring H., Philipp B. and Dautzenberg H. 1971.Wechselstrompolarographische Untersuchungen an Carboxy-methylcellulosen. Faserforsch. Textiltechnik 22: 581–586.

    Google Scholar 

  • Bard A.J. and Faulkner L.R. 1980. Electrochemical Methods. Wiley & Sons, New York, Appendix B.

    Google Scholar 

  • Fischer K., Schmidt I. and Hintze H. 1994. Untersuchungen zur Substituentenverteilung in Cellulosexanthogenat. Papier 48: 769–773.

    Google Scholar 

  • Gohdes M. and Mischnick P. 1998. Determination of the substitution pattern in the polymer chain of cellulose sulfates. Carbohydr. Res. 309: 109–115.

    Google Scholar 

  • Gohdes M., Mischnick P. and Wagenknecht W. 1997. Methylation analysis of cellulose sulphates. Carbohydr. Polymers 33: 163–168.

    Google Scholar 

  • Heinze Th. 1998. New ionic polymers by cellulose functionalization. Macromol. Chem. Phys. 199: 2341–2364.

    Google Scholar 

  • Jehring H. 1974. Mischadsorption. In: Jehring H. (ed.), Elek-trosorptionsanalyse mit der Wechselstrompolarographie. Aka-demie-Verlag, Berlin.

    Google Scholar 

  • Klemm D., Heinze T., Philipp B. and Wagenknecht W. 1997. New approaches to advanced polymers by selective cellulose functionalization. Acta Polymerica 48: 277–297.

    Google Scholar 

  • Jaseja M., Rej R.N., Sauriol F. and Perlin A.S. 1989. Novel regio-and stereoselective modifications of heparin in alkaline solu-tion. Nuclear magnetic resonance spectroscopic evidence. Can. J. Chem. 67: 1449–1456.

    Google Scholar 

  • Lukanoff B. and Dautzenberg H. 1994. Natriumcellulosesulfat als Komponente für die Erzeugung von Mikrokapseln durch Poly-elektrolytkomplexbildung. 1. Mitt. Heterogene Sulfatierung von Cellulose unter Verwendung von Schwefelsäure/Propanol als Reaktionsmedium und Sulfatiermittel. Papier 48: 287–296.

    Google Scholar 

  • Mischnick P. and König W.A. 1991. Bestimmung der Substituen-tenverteilung modifizierter Polysaccaride durch chemischen Abbau und Gaschromatographie/Massenspektrometrie. Papier 45: 757–764.

    Google Scholar 

  • Mischnick P. and Kühn G. 1996. Model studies on methyl amyloses: correlation between reaction conditions and primary structure. Carbohydr. Res. 290: 199–207.

    Google Scholar 

  • Mota A.M., Simoes Goncalves M.L., Farinha J.P. and Buffle J. 1994a. Adsorption of poly(ethylene glycol)s on mercury/aqueous solution interface. 1. Kinetics of PEG 8000 adsorption. Colloids Surfaces A 90: 271–278.

    Google Scholar 

  • Mota A.M., Simoes Goncalves M.L., Farinha J.P. and Buffle J. 1994b. Adsorption of poly(ethylene glycol)s on mercury/aqueous solution interface. 2. Influence of the chain length. Colloids Surfaces A 90: 279–283.

    Google Scholar 

  • Nehls I., Wagenknecht W., Philipp B. and Stscherbina D. 1994.Characterization of cellulose and cellulose derivatives in solution by high resolution carbon-13 C-NMR spectroscopy. Progr. Polymer Sci. 19: 29–78.

    Google Scholar 

  • Philipp B., Klemm D. and Heinze U. 1999. Cellulose. Regioselective cellulose chemistry: a challenge to cellulose research and development at the end of this century. Polymer News 24: 305–308.

    Google Scholar 

  • Puls J., Horner S., Kruse T. and Saake B. 1998. Enzymunterstützte Charakterisierung von Carboxymethylcellulosen mit herkömm-licher und neuartiger Verteilung der funktionellen Gruppen. Papier 52: 743–748.

    Google Scholar 

  • Reiche B., Jehring H. and Philipp B. 1978a. Untersuchungen zum Elektrosorptionsverhalten verschiedener Cellulose-und Stärke-derivate. Cellulose Chem. Technol. 12: 573–584.

    Google Scholar 

  • Reiche B., Jehring H., Dautzenberg H. and Philipp B. 1978b. Elek-trosorptionsuntersuchungen an Carboxymethylcellulosen. Faserforsch. Textiltechnik 29: 324–328.

    Google Scholar 

  • van Boeckel S., Meuleman D., Westerduin P., Vrijhof P. and Houdenhoven F. 1997. Heparin research at Organon-Diosynth. Carbohydr. Europe 16: 14–23.

    Google Scholar 

  • Wagenknecht W., Nehls I., Klemm D. and Philipp B. 1992. Synthesis and substitution distribution of Na-cellulose sulphates via O-trimethylsilyl cellulose as intermediate. Acta Polymerica 43: 266–269.

    Google Scholar 

  • Wagenknecht W., Nehls I. and Philipp B. 1993. Studies on the regioselectivity of cellulose sulfation in an N 2 O 4-N,N-dimethyl-formamide-cellulose system. Carbohydr. Res. 240: 245–252.

    Google Scholar 

  • Wagenknecht W. 1996. Regioselektive Cellulosederivate durch Modifizierung technischer Celluloseacetate. Papier 50: 712–720.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuldt, U., Wagenknecht, W. & Richter, A. Electrosorption of sodium cellulose sulfates with different substitution patterns. Cellulose 9, 271–282 (2002). https://doi.org/10.1023/A:1021168425119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021168425119

Navigation