Skip to main content
Log in

Characterization and chromosomal distribution of novel satellite DNA sequences of the lesser rhea (Pterocnemia pennata) and the greater rhea (Rhea americana)

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Two different types of novel satellite DNA (stDNA) sequences were cloned from the lesser rhea (Ptercnemia pennata) and the greater rhea (Rhea americana) after digestion of genomic DNAs with a restriction endonuclease Pvu II, and characterized by filter hybridization and in-situ hybridization to metaphase chromosomes. These nucleotide sequences consisted of GC-rich 288-bp and 332-bp repeated elements in P. pennata and 288-bp and 336-bp repeated elements in R. americana, all of which were organized in tandem arrays in the genome. The 288-bp and 332-bp elements of P. pennata displayed strong sequence similarity with the 288-bp and 336-bp elements of R. americana, respectively. The 332-bp and 336-bp elements were located on almost all the microchromosomes in both the species. The other type of repeated elements, the 288-bp element, was located on four and nine pairs of microchromosomes in P. pennata and R. americana, respectively. All the stDNA sequences were not crosshybridized to genomic DNAs of another three ratite species, ostrich (Struthio camelus), cassowary (Casuarius casuarius) and emu (Dromaius novaehollandiae), suggesting that these stDNA sequences are conserved in the same family but fairly divergent among the different families of Struthioniformes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari HA, Takagi N, Sasaki M (1988) Morphological differentiation of sex chromosomes in three species of ratite birds. Cytogenet Cell Genet 47: 185-188.

    Google Scholar 

  • Benirschke RJ, Sekulovich RE, Risser AC (1976) The chromosomes of Darwin's rhea (Pterocnemia p. pennata, Aves). Chrom Inform Serv 21: 13-14.

    Google Scholar 

  • Chen Z-Q, Lin CC, Hodgetts RB (1989) Cloning and characterization of a tandemly repeated DNA sequence in the crane family (Gruidae). Genome 32: 646-654.

    PubMed  CAS  Google Scholar 

  • de Boer LEM (1980) Do the chromosomes of the kiwi provide evidence for a monophyletic origin of the ratites? Nature 287: 84-85.

    Article  PubMed  CAS  Google Scholar 

  • Habermann FA, Cremer M, Walter J et al. (2001) Arrangements of macro-and microchromosomes in chicken cells. Chromosomes Res 9: 569-584.

    Article  CAS  Google Scholar 

  • Longmire JL, Lewis AK, Brown NC et al. (1988) Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae. Genomics 2: 14-24.

    Article  PubMed  CAS  Google Scholar 

  • Madsen CS, Brooks JE, de Kloet E, de Kloet SR (1994) Sequence conservation of an avian centromeric repeated DNA component. Genome 37: 351-355.

    PubMed  CAS  Google Scholar 

  • Matsuda Y, Chapman VM (1995) Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 16: 261-272.

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Varga F, Berger H et al. (1990) A 41-42 bp tandemly repeated sequence isolated from nuclear envelopes of chicken erythrocytes is located predominantly on microchromosomes. Chromosoma 99: 131-137.

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJM, Varga F, Gruendler P et al. (1992) Characterization of a new repetitive sequence that is enriched on microchromosomes of turkey. Chromosoma 102: 9-14.

    Article  PubMed  CAS  Google Scholar 

  • McQueen HA, Fantes J, Cross SH, Clark VH, Archibald AL, Bird AP (1996) CpG islands of chicken are concentrated on microchromosomes. Nature Genet 12: 321-324.

    Article  PubMed  CAS  Google Scholar 

  • McQueen HA, Siriaco G, Bird AP (1998) Chicken microchromosomes are hyperacetylated, early replicating, and gene rich. Genome Res 8: 621-630.

    PubMed  CAS  Google Scholar 

  • Nishida-Umehara C, Fujiwara A, Ogawa A, Mizuno S, Abe S, Yoshida MC (1999) Differentiation of Z and W chromosomes revealed by replication banding and FISH mapping of sex-chromosome-linked DNA markers in the cassowary (Aves, Ratitae). Chromosome Res 7: 635-640.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa A, Murata K, Mizuno S (1998) The location of Z-and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu. Proc Natl Acad Sci USA 95: 4415-4418.

    Article  PubMed  CAS  Google Scholar 

  • Primmer CR, Raudsepp T, Chowdhary BP, Moller AP, Ellegren H (1997) Low frequency of microsatellite in the avian genome. Genome Res 7: 471-482.

    PubMed  CAS  Google Scholar 

  • Saifitdinova AF, Derjusheva SE, Malykh AG, Zhurov VG, Andreeva TF, Gaginskaya ER (2001) Centromeric tandem repeat from the chaffinch genome: Isolation and molecular characterization. Genome 44: 96-103.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch FE, Manlatls T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schmid M, Enderle E, Schindeler D, Schempp W (1989) Chromosome banding and DNA replication patterns in bird karyotypes. Cytogenet Cell Genet 52: 139-146.

    PubMed  CAS  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and Classification of Birds: A Study in Molecular Evolution. New Haven: Yale University Press.

    Google Scholar 

  • Silbley CG, Monroe Jr BL (1990) Distribution and Taxonomy of Birds of the World. New Haven: Yale University Press.

    Google Scholar 

  • Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76: 67-112.

    Article  PubMed  CAS  Google Scholar 

  • Solovei IV, Joffe BI, Gaginskaya ER, Macgregor HC (1996) Transcription on lampbrush chromosomes of a centromerically localized highly repeated DNA in pigeon (Columba) relates to sequence arrangement. Chromosome Res 4: 588-603.

    Article  PubMed  CAS  Google Scholar 

  • Stock AD, Arrighi FE, Stefos K (1974) Chromosome homology in birds: banding patterns of the chromosomes of the domestic chicken, ring-necked dove, and domestic pigeon. Cytogenet Cell Genet 13: 410-418.

    PubMed  CAS  Google Scholar 

  • Suzuki T, Kurosaki T, Shimada K et al. (1999a) Cytogenetic mapping of 31 functional genes on chicken chromosomes by direct R-banding FISH. Cytogenet Cell Genet 87: 32-40.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Kurosaki T, Agata K et al. (1999b) Cytogenetic assignment of 29 functional genes to chicken microchromosomes by FISH. Cytogenet Cell Genet 87: 233-237.

    Article  PubMed  CAS  Google Scholar 

  • Takagi N, Sasaki M (1974) A phylogenetic study of bird karyotypes. Chromosoma 46: 91-120.

    Article  PubMed  CAS  Google Scholar 

  • Takagi N, Itoh M, Sasaki M (1972) Chromosome studies in four species of Ratitae (Aves). Chromosoma 36: 281-291.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Suzuki T, Nojiri T, Yamagata T, Namikawa T, Matsuda Y (2000) Characterization and chromosomal distribution of a novel satellite DNA sequence of Japanese quail (Coturnix coturnix japonica). J Hered 91: 412-415.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Nishida-Umehara, C. & Matsuda, Y. Characterization and chromosomal distribution of novel satellite DNA sequences of the lesser rhea (Pterocnemia pennata) and the greater rhea (Rhea americana). Chromosome Res 10, 513–523 (2002). https://doi.org/10.1023/A:1020996431588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020996431588

Navigation