Skip to main content
Log in

The Anomalous Pharmacokinetics of Amiodarone Explained by Nonexponential Tissue Trapping

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Conventional pharmacokinetic (PK) concepts fail to describe the long-term pharmacokinetics of the extremely cationic amphiphilic drug amiodarone. A nonclassical model based on the phenomenon of trapping at tissue binding sites with very long release times is presented, which implies that a volume of distribution and a steady-state level cannot be defined. In agreement with clinical PK data available in the literature, the model well describes not only single-dose disposition curves but also the persistently increasing plasma concentration–time curve during long-term treatment (up to 5 years) and the washout curve following cessation of therapy. The novel aspect is a long-tailed tissue residence time distribution which is incorporated into a recirculatory model leaving the initial distribution process and the clearance concept unchanged. The underlying theoretical approach, which is known as “strange or anomalous” kinetics in physical sciences, and the fractal scaling property of the model may enhance our understanding of the PK of extremely hydrophobic xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. N. Singh. Amiodarone: the expanding antiarrhythmic role and how to follow a patient on chronic therapy. Clin. Cardiol. 20:608–618 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. P. C. Adams, D. W. Holt, G. C. A. Storey, A. R. Morley, J. Callaghan, M. R. C. Path, and R. W. F. Campbell. Amiodarone and its desethyl metabolite: tissue distribution and morphologic changes during long-term therapy. Ther. Prev. Pharmacol. 72:1064–1075 (1985).

    CAS  Google Scholar 

  3. D. W. Holt, G. T. Tucker, P. R. Jackson, and G. C. A. Storey. Amiodarone pharmacokinetics. Am. Heart J. 106:840–847 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. R. Candinas, J. Frielingsdorf, H. R. Ha, T. Carrel, M. Turina, and F. Follath. Myocardial amiodarone concentrations after short-and long-term treatment in patients with end-stage heart failure. Eur. J. Clin. Pharmacol. 53:331–336 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. R. Latini, G. Tognoni, and R. E. Kates. Clinical pharmacokinetics of amiodarone. Clin. Pharmacokin. 9:136–156 (1984).

    Article  CAS  Google Scholar 

  6. M. Weiss. Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. I. Log-convex drug disposition curves. J. Pharmacokin. Biopharm. 14:635–657 (1986).

    Article  CAS  Google Scholar 

  7. G. Pfister and H. Scher. Dispersive (non-Gaussian) transient transport in disordered solids. Adv. Phys. 27:747–798 (1978).

    Article  CAS  Google Scholar 

  8. M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter. Strange kinetics. Nature 363:31–37 (1978).

    Article  Google Scholar 

  9. M. Weiss and W. Förster. Pharmacokinetic model based on circulatory transport. Eur. J. Clin. Pharmacol. 16:287–293 (1979).

    Article  Google Scholar 

  10. M. Weiss, G. H. Hübner, G. I. Hübner, and W. Teichmann. Effects of cardiac output on disposition kinetics of sorbitol: recirculatory modelling. Br. J. Clin. Pharmacol. 41:261–268 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. M. Weiss and M. S. Roberts. Tissue distribution kinetics as determinant of transit time dispersion of drugs in organs: Application of a stochastic model to the rat hindlimb. J. Pharmacokin. Biopharm. 24:173–196 (1996).

    Article  CAS  Google Scholar 

  12. J.-P. Bouchaud and A. Georges. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Report 195:127–193 (1990).

    Article  Google Scholar 

  13. M. Gitterman and G. H. Weiss. Generalized theory of the kinetics of tracers in biological systems. Bull. Math. Biol. 56:171–186 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. G. T. Tucker, P. R. Jackson, G. C. A. Storey, and D. W. Holt. Amiodarone disposition: polyexponential, power and gamma functions. Eur. J. Clin. Pharmacol. 26:655–656 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. J. B. Bassingthwaighte, L. S. Liebovich, and B. J. West. Fractal Physiology. Oxford University Press, New York, 1994.

    Book  Google Scholar 

  16. J. B. Bassingthwaighte and D. A. Beard. Fractal 15O-labeled water washout from the heart. Circ. Res. 77:1212–1220 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. L. Bass. Heterogeneity within observed regions: physiologic basis and effects on estimation of rates of biodynamic processes. Circulation 72:47–52 (1985).

    Article  Google Scholar 

  18. L. Bass, J. Aisbett, and A. J. Bracken. Asymptotic forms of tracer clearance curves: theory and applications of improved extrapolations. J. Theorel. Biol. 111:755–785 (1984).

    Article  CAS  Google Scholar 

  19. G. H. Weiss, R. E. Goans, M. Gitterman, S. A. Abrams, N. E. Vieira, and A. L. Yergey. A non-Markovian model for calcium kinetics in the body. J. Pharmacokin. Biopharm. 22:367–379 (1994).

    Article  CAS  Google Scholar 

  20. J. H. Matis and T. E. Wehrly. A general approach to non-Markovian compartmental models. J. Pharmacokin. Biopharm. 26:437–456 (1998).

    Article  CAS  Google Scholar 

  21. M. Weiss. Pharmacokinetics in organs and the intact body: model validation and reduction. Eur. J. Pharm. Sci. 7:119–127 (1998).

    Article  Google Scholar 

  22. S. A. Gross and P. Somani. Amiodarone-induces ultrastructural changes in canine myocardial fibers. Am. Heart J. 112:771–779 (1998).

    Article  Google Scholar 

  23. H. Lüllmann, R. Lüllmann-Rauch, and O. Wassermann. Drug-induced phospholipidoses. CRC Crit. Rev. Toxicol. 4:185 (1975).

    PubMed  Google Scholar 

  24. L. G. Herbette, M. Trumbore, D. W. Chester, and A. M. Katz. Possible molecular basis for the pharmacokinetics and pharmacodynamics of three membrane-active drugs: propranolol, nimodipine and amiodarone. J. Mol. Cell. Cardiol. 20:373–378 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. J. S. Beck and A. Rescigno. Calcium kinetics: the philosophy and practice of science. Phys. Med. Biol. 15:566–567 (1970).

    Article  CAS  PubMed  Google Scholar 

  26. S. D. Beder, M. H. Cohen, and G. BenShachar. Time course of myocardial amiodarone uptake in the piglet heart using a chronic animal model. Pediat. Cardiol. 19:204–211 (1998).

    Article  CAS  Google Scholar 

  27. C. I. Haffajee, J. C. Love, A. T. Canada, L. J. Lesko, G. Asdourian, and J. S. Alpert. Clinical pharmacokinetics and efficacy of amiodarone for refractory tachyarrhythmias. Circulation 67:1347–1355 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, M. The Anomalous Pharmacokinetics of Amiodarone Explained by Nonexponential Tissue Trapping. J Pharmacokinet Pharmacodyn 27, 383–396 (1999). https://doi.org/10.1023/A:1020965005254

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020965005254

Navigation