Skip to main content
Log in

Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. I. Log-convex drug disposition curves

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Introducing the phenomenoiogical concept of a time-varying fractional rate of elimination kD(t)and applying the theory of lifetime distributions, implications of the log-convexity of drug disposition curves are examined and some important applications are described. Linear pharmacokinetic systems exhibiting a log-convex impulse response and satisfying the basic conditions underlying the noncompartmental approach have the following properties: (1) The time-varying volume of distribution V(t)increases, and consequently the fractional rate of elimination kD(t)=CL/V(t)decreases monotonically. (2) The concentration-time curve and the time course of total amount of drug in the body, respectively, have an exponential tail [where V(t)approaches the equilibrium value VZ].The relative dispersion of residence times (CV 2D =VDRT/MDRT2)and the ratio Vss/VZ (V ss is the volume of distribution at steady state) act as measures of departure from pure monoexponential decay (one-compartment behaviour). The role of the latter parameters as shape parameters of the curve that characterize the distributional properties of drugs is discussed. Upper and lower bounds of the time course of drug amount in the body are derived using the parameters MDRTand CV 2D or λz (terminal exponential coefficient), respectively. This approach is also employed to construct upper bounds on the fractional error in AUCdetermination by numerical integration that is due to curve truncation. The significance of the fractional elimination rate concept as a unifying approach in interspecies pharmacokinetic scaling is pointed out. Some applications of the results are demonstrated, using digoxin data from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. DiStefano III. Noncompartmental vs. compartmental analysis: Some bases of choice.Am. J. Physiol. 243:R1-R6 (1982).

    PubMed  Google Scholar 

  2. M. Weiss. Theorems on log-convex disposition curves in drug and tracer kinetics.J. Theor. Biol. 116:355–368 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. R. E. Barlow and F. Proschan.Mathematical Theory of Reliability, Wiley, New York, 1965.

    Google Scholar 

  4. B. C. McInnis, S. A. El-Asfouri, and S. A. Kapadia. On stochastic compartmental modeling.Bull. Math. Biol. 41:611–613 (1979).

    Article  Google Scholar 

  5. N. A. Lassen and W. Perl.Tracer Kinetic Methods in Medical Physiology, Raven, New York, 1979.

    Google Scholar 

  6. D. M. Himmelblau.Process Analysis by Statistical Methods, Wiley, New York, 1968.

    Google Scholar 

  7. M. Weiss, Definition of pharmacokinetic parameters: Influence of the sampling site.J. Pharmacokin. Biopharm. 12:167–176 (1984).

    Article  CAS  Google Scholar 

  8. J. Keilson.Markov Chain Models—Rarity and Exponentiality, Springer, New York, 1979.

    Book  Google Scholar 

  9. M. E. Wise. Negative power functions of time in pharmacokinetics and their implications.J. Pharmacokin. Biopharm. 13:309–346 (1985).

    Article  CAS  Google Scholar 

  10. J. Eisenfeld. Relationship between stochastic and differential models of compartmental systems.Math. Biosci. 43:289–305 (1979).

    Article  Google Scholar 

  11. J. H. Matis, T. E. Wehrly, and C. M. Metzler. On some stochastic formulations and related statistical moments of pharmacokinetic models.J. Pharmacokin. Biopharm. 11:77–92 (1983).

    Article  CAS  Google Scholar 

  12. M. Weiss. A note on the role of generalized inverse Gaussian distributions of circulatory transit times in pharmacokinetics.J. Math. Biol. 18:95–102 (1984).

    Article  Google Scholar 

  13. S. Niazi. Volume of distribution as a function of time.J. Pharm. Sci. 65:452–454 (1976).

    Article  CAS  PubMed  Google Scholar 

  14. M. Weiss. Hemodynamic influences upon the variance of disposition residence time distribution.J. Pharmacokin. Biopharm. 11:63–75 (1983).

    Article  CAS  Google Scholar 

  15. K. Yamaoka, T. Tanigawara, T. Nakagawa, and T. Uno. Capacity-limited elimination of cefmetazole in rat.Int. J. Pharm. 10:291–300 (1982).

    Article  CAS  Google Scholar 

  16. W. G. Kramer, A. J. Kolibash, R. P. Lewis, M. S. Bathala, J. A. Visconti, and R. H. Reunig. Pharmacokinetics of digoxin: Relationship between response intensity and predicted compartmental drug levels in man.J. Pharmacokin. Biopharm. 7:47–61 (1979).

    Article  CAS  Google Scholar 

  17. M. Weiss. Model-independent assessment of accumulation kinetics based on moments of drug disposition curves.Eur. J. Clin. Pharmacol. 27:355–359 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. P. Hall. On measures of the distance of a mixture from its parent distribution.Stoch. Process Appl. 8:357–365 (1979).

    Article  Google Scholar 

  19. M. Weiss. Use of gamma distributed residence times in pharmacokinetics.Eur. J. Clin. Pharmacol. 25:695–705 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. H. Boxenbaum. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics.J. Pharmacokin. Biopharm. 10:201–227 (1982).

    Article  CAS  Google Scholar 

  21. H. Boxenbaum and R. Ronfeld. Interspecies pharmacokinetic scaling and the Dedrick plots.Am. J. Physiol. 245:R768-R774 (1983).

    CAS  PubMed  Google Scholar 

  22. R. L. Dedrick, K. B. Bischoff, and D. Z. Zaharko. Interspecies correlation of plasma concentration history of methotrexate.Cancer Chemother. Rep. I 54:95–101 (1970).

    CAS  Google Scholar 

  23. M. Weiss, W. Sziegoleit, and W. Förster. Dependence of pharmacokinetic parameters on the body weight.Int. J. Clin. Pharmacol. 15:572–575 (1977).

    CAS  Google Scholar 

  24. K. H. Norwich and S. Siu. Power functions in physiology and pharmacology.J. Theor. Biol 95:387–398 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. G. T. Tucker, P. R. Jackson, G. C. A. Storey, and D. W. Holt. Amiodarone disposition: Polyexponential, power and gamma functions.Eur. J. Clin. Pharmacol. 26:655–656 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. W. A. Colburn. A time-dependent volume of distribution term used to describe linear concentration-time profiles.J. Pharmacokin. Biopharm. 11:389–400 (1983).

    Article  CAS  Google Scholar 

  27. K. Takada and S. Asada. A model independent approach to describe the blood disappearance profile of intravenously administered drugs.Chem. Pharm. Bull. 29:1462–1466 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. M. Berman. Kinetic analysis of turnover date.Prog. Biochem. Pharmacol. 15:67–108 (1979).

    CAS  PubMed  Google Scholar 

  29. J. G. Wagner. Significance of ratios of different volumes of distribution in pharmacokinetics.Biopharm. Drug. Dispos. 4:263–270 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. M. Weiss. Importance of tissue distribution in determining drug disposition curves.J. Theor. Biol. 103:649–652 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. J. Z. Hearon. The washout curve in tracer kinetics.Math. Biosci 3:31–39 (1968).

    Article  Google Scholar 

  32. J. Z. Hearon. A monotonicity theorem for compartmental systems.Math. Biosci. 46:293–300 (1979).

    Article  Google Scholar 

  33. J. H. Matis and T. E. Wehrly. Modelling pharmacokinetic variability on the molecular level with stochastic compartmental systems. In M. Rowland, L. B. Sheiner, and T. Steimer (eds.),Variability in Drug Therapy: Description, Estimation and Control, Raven Press, New York, 1985.

    Google Scholar 

  34. J. H. Matis and H. D. Tolley. On stochastic modelling of tracer kinetics.Fed. Proc. 39:104–109 (1980).

    CAS  PubMed  Google Scholar 

  35. M. Weiss and W. Förster. Pharmacokinetic model based on circulatory transport.Eur. J. Clin. Pharmacol. 16:287–293 (1979).

    Article  Google Scholar 

  36. D. G. Covell, M. Berman, and C. Delisi. Mean residence time—Theoretical development, experimental determination, and practical use in tracer analysis.Math. Biosci. 72:213–244 (1984).

    Article  Google Scholar 

  37. M. Rowland and T. M. Tozer.Clinical Pharmacokinetics: Concepts and Applications, Lea and Febiger, Philadelphia, 1980.

    Google Scholar 

  38. M. Brown. Approximating IMRL distributions by exponential distributions with application to first passage times.Ann. Probability 11:419–427 (1983).

    Article  Google Scholar 

  39. R. E. Barlow and F. Proschan.Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, M. Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. I. Log-convex drug disposition curves. Journal of Pharmacokinetics and Biopharmaceutics 14, 635–657 (1986). https://doi.org/10.1007/BF01067968

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067968

Key words

Navigation