Skip to main content
Log in

Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO)/silica (SiO2) composite nanoparticles were made by flame spray pyrolysis. The effects of the Zn/Si ratio on particle properties were examined and compared with those of the pure ZnO and SiO2 particles made at the same conditions. Polyhedral aggregates of nano-sized primary particles were obtained in all experiments. The mixed-oxide primary particle size was smaller than that of pure oxides. The primary particles consisted of ZnO nano-crystals and amorphous SiO2, as seen by high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) analysis using the fundamental parameter approach. The XRD size of ZnO was controlled from 1.2 to 11.3 nm by the initial precursor composition and it was consistent with HR-TEM. The composite particles exhibited an excellent thermal stability and little crystalline growth of ZnO (e.g., from 1.9 to 2.2 nm) was observed even after calcination at 600°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. KLINGENDER, M. OYAMA and Y. SAITO, Rubber World 202 (1990) 26.

    Google Scholar 

  2. D. S. KING and R. M. NIX, J. Catal. 160 (1996) 76.

    Google Scholar 

  3. M. CONSONNI, D. JOKIC, D. Y. MURZIN and R. TOUROUDE, ibid. 188 (1999) 165.

    Google Scholar 

  4. S. HINGORANI, V. PILLAI, P. KUMAR, M. S. MULTANI and D. O. SHAH, Mater. Res. Bull. 28 (1993) 1303.

    Google Scholar 

  5. M. SINGHAL, V. CHHABRA, P. KANG and D. O. SHAH, ibid. 32 (1997) 239.

    Google Scholar 

  6. S. BOILY, H. ALAMDARI, G. CROSS, A. JOLY, A. VANNESTE, P. GRUTTER and R. SCHULZ, in “Synthesis and Properties of Mechanically Alloyed and Nanocrystalline Materials, Pts. 1 and 2–Ismanam-96” (Transtec Publications Ltd, Zurich-Uetikon, 1997) p. 993.

    Google Scholar 

  7. H. RENSMO, K. KEIS, H. LINDSTROM, S. SODERGREN, A. SOLBRAND, A. HAGFELDT, S. E. LINDQUIST, L. N. WANG and M. MUHAMMED, J. Phys.Chem. B 101 (1997) 2598.

    Google Scholar 

  8. K. Y. JUNG, Y. C. KANG and S. B. PARK, J. Mater. Sci. Lett. 16 (1997) 1848.

    Google Scholar 

  9. T. IWASAKI, M. SATOH, T. MASUDA and T. FUJITA, J. Mater. Sci. 35 (2000) 4025.

    Google Scholar 

  10. S. MONTICONE, R. TUFEU and A. V. KANAEV, J. Phys. Chem. B 102 (1998) 2854.

    Google Scholar 

  11. C. L. CARNES and K. J. KLABUNDE, Langmuir 16 (2000) 3764.

    Google Scholar 

  12. MIKRAJUDDIN, F. ISKANDAR, K. OKUYAMA and F. G. SHI, J. Appl. Phys. 89 (2001) 6431.

    Google Scholar 

  13. C. CANNAS, M. CASU, A. LAI, A. MUSINU and G. PICCALUGA, J. Mater. Chem. 9 (1999) 1765.

    Google Scholar 

  14. S. E. PRATSINIS, Prog. Energy Combust. Sci. 24 (1998) 197.

    Google Scholar 

  15. M. SOKOLOWSKI, A. SOKOLOWSKA, A. MICHALSKI and B. GOKIELI, J. Aerosol Sci. 8 (1977) 219.

    Google Scholar 

  16. H. K. KAMMLER, L. MÄDLER and S. E. PRATSINIS, Chem. Eng. Technol. 24 (2001) 583.

    Google Scholar 

  17. J. W. CARROZ, F. K. ODENCRANTZ, W. G. FINNEGAN and D. C. DREHMEL, Am. Ind. Hyg. Assoc. J. 41 (1980) 77.

    Google Scholar 

  18. T. TANI, L. MÄDLER and S. E. PRATSINIS, J. Nanoparticle Res., in press.

  19. C. R. BICKMORE, K. F. WALDNER, D. R. TREADWELL and R. M. LAINE, J. Amer. Ceram. Soc. 79 (1996) 1419.

    Google Scholar 

  20. A. C. SUTORIK, S. S. NEO, D. R. TREADWELL and R. M. LAINE, ibid. 81 (1998) 1477.

    Google Scholar 

  21. R. M. LAINE, T. HINKLIN, G. WILLIAMS and S. C. RAND, in “Metastable, Mechanically Alloyed and Nanocrystalline Materials, ” Pts. 1 and 2 (Trans Tech Publications Ltd, Zurich-Uetikon, 2000) p. 500.

    Google Scholar 

  22. L. MÄDLER, H. K. KAMMLER, R. MUELLER and S. E. PRATSINIS, J. Aerosol Sci. 33 (2002) 369.

    Google Scholar 

  23. R. W. CHEARY and A. COELHO, J. Appl. Crystallogr. 25 (1992) 109.

    Google Scholar 

  24. Idem., ibid. 31 (1998) 862.

  25. J. ALBERTSSON, S. C. ABRAHAMS and A. KVICK, Acta Crystallogr. Sect. B-Struct. Commun. 45 (1989) 34.

    Google Scholar 

  26. R. C. RAU, Advance in X-Ray Analysis 5 (1962) 104.

    Google Scholar 

  27. W. GERHARTZ, in “Ullmanns Encyklopadie der technischen Chemie” (Verlag Chemie, Weinheim, 1972) Band 5, p. 256.

    Google Scholar 

  28. S. VEMURY and S. E. PRATSINIS, J. Amer. Ceram. Soc. 78 (1995) 2984.

    Google Scholar 

  29. J. R. JENSEN, T. JOHANNESSEN, S. WEDEL and H. LIVBJERG, J. Nanoparticle Res. 2 (2000) 363.

    Google Scholar 

  30. D. R. LIDE, in “CRC Handbook of Chemistry and Physics, ” 81st ed. (CRC Press, Boca Raton, 2000) p. 4–85 and 12–15.

    Google Scholar 

  31. R. MORIMO, R. MOCHINAGA and K. NAKAMURA, Mater. Res. Bull. 29 (1994) 751.

    Google Scholar 

  32. Y. C. KANG and S. B. PARK, ibid. 35 (2000) 1143.

    Google Scholar 

  33. I. W. LENGGORO, F. ISKANDAR, H. MIZUSHIMA, B. XIA, K. OKUYAMA and N. KIJIMA, Jpn. J. Appl. Phys. Part 2–Lett. 39 (2000) L1051.

    Google Scholar 

  34. M. SUZUKI, M. KAGAWA, Y. SYONO and T. HIRAI, J. Mater. Sci. 27 (1992) 679.

    Google Scholar 

  35. C. C. LIN and P. Y. SHEN, J. Solid State Chem. 112 (1994) 387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Pratsinis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tani, T., Mädler, L. & Pratsinis, S.E. Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis. Journal of Materials Science 37, 4627–4632 (2002). https://doi.org/10.1023/A:1020660702207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020660702207

Keywords

Navigation