Skip to main content

Advertisement

Log in

Discovering lactic acid bacteria by genomics

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, nvironmental habitat, and its role in fermentation, bioprocessing, or probiotics. For those projects where genome sequence data were available by March 2002, summaries include a listing of key statistics and interesting genomic features. These efforts will revolutionize our molecular view of Gram–positive bacteria, as up to 15 genomes from the low GC content lactic acid bacteria are expected to be available in the public domain by the end of 2003. Our collective view of the lactic acid bacteria will be fundamentally changed as we rediscover the relationships and capabilities of these organisms through genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrne S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE& Molin G (1998) The normal Lactobacillus flora of healthy human rectal and oral mucosa. J. Appl. Microbiol. 85: 88–94.

    Google Scholar 

  • Almirón-Roig E, Mulholland F, Gasson MJ& Griffin AM (2000) The complete cps gene cluster from Streptococcus thermophilus NCFB 2393 involved in the biosynthesis of a new exopolysaccharide. Microbiology. 146: 2793–2802.

    Google Scholar 

  • Alsop RM (1983) Industrial production of dextrans. In: Bushell ME (Ed) Progress in Industrial Microbiology (pp 1–42). Elsevier, New York.

    Google Scholar 

  • Altermann E, Klein JR& Henrich B (1999) Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage (phi) adh. Gene 236: 333–346.

    Google Scholar 

  • Alvarez S, Herrero C, Bru E& Perdigon G (2001) Effect of Lactobacillus casei and yogurt administration on prevention of Pseudomonas aeruginosa infection in young mice. J. Food Prot. 64: 1768–1774.

    Google Scholar 

  • Amador E, Castro JM, Correia A& Martin JF (1999) Structure and organization of the rrnD operon of Brevibacterium lactofermentum: analysis of the 16S rRNA gene. Microbiology 145: 915–924.

    Google Scholar 

  • Arrach N, Fernandez-Martin R, Cerda-Olmedo E& Avalo J (2001) A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc. Natl. Acad. Sci. 98: 1687–1692.

    Google Scholar 

  • Axelsson L (1998) Lactic acid bacteria: classification and physiology. In: Salminen S& Von Wright A (Eds) Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd edition (pp 1–72). Marcel Dekker, New York.

    Google Scholar 

  • Baccigalupi L, Naclerio G, de Felice M& Ricca E (2000) Efficient insertional mutagenesis in Streptococcus thermophilus. Gene 258: 9–14.

    Google Scholar 

  • Barefoot SF& Klaenhammer TR (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol. 45: 1808–1815.

    Google Scholar 

  • Beelman RB, Gavin A III& Keen RM (1977) A new strain of Leuconostoc oenos for induced malo-lactic fermentation in eastern wines. Am. J. Enol. Vitic. 28: 159–165.

    Google Scholar 

  • Beelman RB, McArdle FJ& Duke GR (1980) Comparison of Leuconostoc oenos strains ML-34 and PSU-1 to induce malolactic fermentation in Pennsylvania red table wines. Am. J. Enol. Viticult. 31: 269–276.

    Google Scholar 

  • Beimfohr C, Ludwig W& Schleifer K-H (1997) Mosaic structure of large regions of the Lactococcus lactis subsp. cremoris chromosome. System. Appl. Microbiol. 20: 216–221.

    Google Scholar 

  • Beresford TP, Fitzsimons NA, Brennan NL& Cogan TM (2001) Recent advances in cheese microbiology. Int. Dairy J. 11: 259–274.

    Google Scholar 

  • Bernet M-F, Brassart D, Neeser J-R& Servin AL (1994) Lactobacillus acidophilus La1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35: 483–489.

    Google Scholar 

  • Bernet-Camard M-F, Liévin V, Brassart D, Neeser J-R, Servin AL& Hudault S (1997) The human Lactobacillus acidophilus strain La1 secretes a non bacteriocin antibacterial substance active in vitro and in vivo. Appl. Environ. Microbiol. 63: 2747–2753.

    Google Scholar 

  • Bhowmik T& Steele JL (1993) Development of an electroporation procedure for gene disruption in Lactobacillus helveticus CNRZ32. J. Gen. Microbiol. 139: 1433–1439.

    Google Scholar 

  • Bhowmik T, Fernández L& Steele JL (1993) Gene replacement in Lactobacillus helveticus CNRZ 32. J. Bacteriol. 175: 6341–6344.

    Google Scholar 

  • Biavati B& Mattarelli P (2001) The family Bifidobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH& Stackebrandt E (Eds) The Prokaryotes (pp 1–70). Springer, New York.

    Google Scholar 

  • Black F, Einarsson K, Lidbeck A, Orrhage K& Nord CE (1991) Effect of lactic acid producing bacteria on the human intestinal microflora during ampicillin treatment. Scand. J. Infect. Dis. 23: 247–254.

    Google Scholar 

  • Bolotin A, Mauger S, Malarme K, Ehrlich SD& Sorokin A (1999) Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie van Leeuwenhoek 76: 27–76.

    Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD& Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    Google Scholar 

  • Bolotin A, Ehrlich SD&Sorokin A (2002) Studies of genomes of dairy bacteria Lactococcus lactis. Sci. Aliments (in press)

  • Boyaval P, Boyaval E& Desmazeaud MJ (1985) Survival of Brevibacterium linens during nutrient starvation and intracellular changes. Arch. Microbiol. 141: 128–132.

    Google Scholar 

  • ten Brink B, Damink C, Joosten HMLJ& Huis in+t Veld JHJ (1990) Ocurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11: 73–84.

    Google Scholar 

  • Broadbent JR (2001) Genetics of lactic acid bacteria. In: Steele JL& Marth EH (Eds) Applied Dairy Microbiology, 2nd ed. Marcel Dekker, New York.

    Google Scholar 

  • Broker BE (1977) Ultrastructural surface changes associated with dextran synthesis by Leuconostoc mesenteroides. J. Bacteriol. 131: 288–92.

    Google Scholar 

  • Burrus V, Bontemps C, Decaris B& Guédon G (2001) Characterization of a novel type II restriction-modification system, Sth368I, encoded by the integrative element ICESt1 of Streptococcus thermophilus CNRZ368. Appl. Environ. Microbiol. 67: 1522–1528.

    Google Scholar 

  • Caldwell S, McMahon DJ, Oberg CJ& Broadbent JR (1996) Development and characterization of lactose-positive Pediococcus species for milk fermentation. Appl. Environ. Microbiol. 62: 936–941.

    Google Scholar 

  • Caldwell S, Hutkins RW, McMahon DJ, Oberg CJ& Broadbent JR (1998) Lactose and galactose uptake by genetically engineered Pediococcus species. Appl. Microbiol. Biotechnol. 49: 315–320.

    Google Scholar 

  • Champomier-Verges M-C, Chaillou S, Cornet M& Zagorec M (2002) Lactobacillis sakei: recent developments and future prospects. Res. Microbiol. 153: 115–123.

    Google Scholar 

  • Chen H, Lim CK, Lee YK& Chan YN (2000) Comparative analysis of the genes encoding 23S–5S rRNA intergenic spacer regions of Lactobacillus casei-related strains. Int. J. Syst. Evol. Microbiol. 50: 471–478.

    Google Scholar 

  • Chevallier B, Hubert JC& Kammerer B (1994) Determination of chromosome size and number of rrn loci in Lactobacillus plantarum by pulsed-field gel electrophoresis. FEMS Microbiol. Lett. 120: 51–56.

    Google Scholar 

  • Cho JS, Choi YJ& Chung DK (2000) Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic lactobacilli. Curr. Microbiol 40: 257–63.

    Google Scholar 

  • Christensen JE, Dudley EG, Pederson JR& Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76: 217–246.

    Google Scholar 

  • Clark RH, Russell WM&Klaenhammer TR (2000) Distribution of Lactobacillus acidophilus among a variety of cultured foods and probiotics. Abstracts, Annual IFT Meeting of the Institute of Food Technologists, Dallas, TX, 10 June, 2000

  • Coderre PE& Somkuti GA (1999) Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. Curr. Microbiol. 39: 295–301.

    Google Scholar 

  • Cogan TM (1987) Co-metabolism of citrate and glucose by Leuconostoc spp.: effects on growth, substrates and products. J. Appl. Bacteriol. 63: 551–58.

    Google Scholar 

  • Cogan TM, O'Dowd M& Mellerick D (1981) Effects of sugar on acetoin production from citrate by Leuconostoc lactis. Appl. Environ. Microbiol. 41: 1–8.

    Google Scholar 

  • Collins MD, Phyllips BA& Zanoni P (1989) Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Bacteriol. 39: 105–108.

    Google Scholar 

  • Conway PL, Gorbach SL& Goldin BR (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 1–12.

    Google Scholar 

  • Coton E, Rollan GC& Lonvaud-Funel A (1998) Histidine carboxylase of Leuconostoc oenos 9204: Purification, kinetic properties, cloning and nucleotide sequence of the hdc gene. J. Appl. Microbiol. 84: 143–151.

    Google Scholar 

  • Daeschel MA& Klaenhammer TR (1985) Association of a 13.6-megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Appl. Environ. Microbiol. 50: 1528–1541.

    Google Scholar 

  • Dambekodi PC& Gilliland SE (1998) Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 81: 1818–1824.

    Google Scholar 

  • Daniel P (1995) Sizing the Lactobacillus plantarum genome and other lactic bacteria species by transverse alternating field electrophoresis. Curr. Microbiol. 30: 243–246.

    Google Scholar 

  • Daveran-Mingot ML, Campo N, Ritzenthaler P& Le Bourgeois P (1998) A natural large chromosomal inversion of Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J. Bacteriol. 180: 4834.

    Google Scholar 

  • Davidson B, Kordis N, Dobos M& Hillier A (1996) Genomic organization of lactic acid bacteria. Antonie van Leeuwenhoek 70: 161–183.

    Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O& Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nuclaic. Acids Res. 27: 4636–4641.

    Google Scholar 

  • Delcour J, Ferain T& Hols P (2000) Advances in the genetics of thermophilic lactic acid bacteria. Curr. Opin. Biotechnol. 11: 497–504.

    Google Scholar 

  • Dellaglio F, Dicks LMT, du Toit M& Torriani S (1991) Designation of ATCC334 in place of ATCC393 (NCDO 161) as the neotype strain of Lactobacillus casei subsp. casei and rejection of the name Lactobacillus paracasei. Int. J. Syst. Bacteriol. 41: 340–342.

    Google Scholar 

  • Dellaglio F, Dicks LMT& Torriani S (1995) The genus Leuconostoc. In: Wood BJB& Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria, vol. 2, (pp 235–278). Blackie Academic&Professional, London

    Google Scholar 

  • Delorme C, Godon J-J, Ehrlich SD& Renault P (1994) Mosaic structure of large regions of the Lactococcus lactis subsp. cremoris chromosome. Microbiology. 140: 3053–3060.

    Google Scholar 

  • Demoss RD, Bard RC& Gunsalus IC 1951. The mechanism of heterolactic fermentation: a new route of ethanol formation. J. Bacteriol. 62: 499–511.

    Google Scholar 

  • Dias B& Weimer B (1998a) Conversion of methionine to thiols by lactococci, lactobacilli, and brevibacteria. Appl. Environ. Microbiol. 64: 3320–3326.

    Google Scholar 

  • Dias B& Weimer B (1998b) Purification and characterization of methionine β-lyase from Brevibacterium linens BL2. Appl. Environ. Microbiol. 64: 3327–3331.

    Google Scholar 

  • Dicks LMT, du Plessis EM, Dellaglio F& Lauer E (1996) Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei. Int. J. Syst. Bacteriol. 46: 337–340.

    Google Scholar 

  • Djordjevic GM, Tchieu & Saier MH (2001) Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis. J. Bacteriol. 183: 3224–3236.

    Google Scholar 

  • Dossonnet V, Monedero V, Zagorec M, Galinier A, Perez-Martinez G& Deutscher J (2000) Phosphorylation of HPr by the bifunctional HPr Kinase/P-Ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J. Bacteriol. 182: 2582–2590.

    Google Scholar 

  • Dudez A-M, Chaillou S, Hissler L, Stentz R, Champomier-Verges M-C, Alpert C-A& Zagorec M 2002. Physiscal and genetic map of the Lactobacillus sakei 23K chromosome. Microbiology, 148: 421–431.

    Google Scholar 

  • Dunny G& McKay LL (1999) Group II introns and expression of conjugative transfer functions in lactic acid bacteria. Antonie van Leeuwenhoek 76: 77–88.

    Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755–763.

    Google Scholar 

  • Favier CF, Vaughan EE, De Vos WM,& Akkermans AD (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68: 219–226.

    Google Scholar 

  • Felley CP, Corthésy-Theulaz I, Blanco Rivero J-L, Sipponen P, Kaufmann M, Bauerfeind P, Wiesel PH, Brassart D, Pfeifer A, Blum AL& Michetti P (2001) Favourable effect of an acidified milk (LC-1) on Heliocobacter pylori gastritis in man. Eur. J. Gastroenterol. Hepatol. 13: 25–29.

    Google Scholar 

  • Ferchichi M, Hemme D, Nardi M& Pamboukdjian N (1985) Production of methanethiol from methionine by Brevibacterium linens CNRZ 918. J. Gen. Microbiol. 131: 715.

    Google Scholar 

  • Fernandez-Espla MD, Garault P, Monnet V& Rul E (2000) Streptococcus thermophilus cell wall-anchored proteinase: release, purification, and biochemical and genetic characterization. Appl. Environ. Microbiol. 66: 4772–4778.

    Google Scholar 

  • Ferrero M, Cesena C, Morelli L, Scolari G& Vescovo M (1996) Molecular characterization of Lactobacillus casei strains. FEMS Microbiol. Lett. 140: 215–219.

    Google Scholar 

  • Fonden R, Mogensen G, Tanaka R& Salminen S (2000) Effect of culture-containing dairy products on intestinal microflora, human nutrition and health-current knowledge and future perspectives. International Dairy Federation Bulletin number 352, IDF, Brussels.

    Google Scholar 

  • Forde A& Fitzgerald D (1999) Bacteriophage defense systems in lactic acid bacteria. Antonie van Leeuwenhoek 76: 89–113.

    Google Scholar 

  • Fox PF, McSweeney PLH& Lynch CM (1998) Significance of non-starter lactic acid bacteria in cheddar cheese. Aust. J. Dairy Technol. 53: 83–89.

    Google Scholar 

  • Fremaux C, Aigle M& Lonvaud FA (1993) Sequence analysis of Leuconostoc oenos DNA: organization of pLo13, a cryptic plasmid. Plasmid 30: 212–23.

    Google Scholar 

  • Fujisawa T, Benno Y, Yaeshima T& Mitsuoka T (1992) Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 with the type strain of Lactobacillus amylovorus. Int. J. System. Bacteriol. 42: 487–491.

    Google Scholar 

  • Garault P, Le Bars D, Besset C& Monnet V (2002) Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus. J. Biol. Chem. 277: 32–39.

    Google Scholar 

  • Garmyn D, Monnet C, Martineau B, Guzzo J, Cavin J-F& Divies C (1996) Cloning and sequencing of the gene encoding alphaacetolactate decarboxylase from Leuconostoc oenos. FEMS Microbiol. Lett. 145: 445–450.

    Google Scholar 

  • Garvie EI, Farrow JAE& Phillips BA (1981) A taxonomic study of some strains of streptococci which grow at 10 °C but not at 45 °C including Streptococcus lactis and Streptococcus cremoris. Zbl. Bakteriol. Hyg. I Abt. Orig. C 2: 151–165.

    Google Scholar 

  • Garvie EI (1986) Genus Leuconostoc. In: Sneath PHA, Mair NS, Sharpe ME& Holt JG (Eds), Bergey's Manual of Systematic Bacteriology, vol 2, 9th ed. (pp 1071–1075). Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1–9.

    Google Scholar 

  • Germond JE, Delley M, D'Amico N& Vincent SL (2001) Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. Eur. J. Biochem. 268: 5149–5156.

    Google Scholar 

  • Gill HS, Rutherfurd KJ, Prasad J& Gopal PK (2000) Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J. Nutr. 83: 167–176.

    Google Scholar 

  • Gill HS, Rutherfurd KJ& Cross ML (2001a) Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J. Clin. Immunol. 21: 264–271.

    Google Scholar 

  • Gill HS, Shu Q, Lin H, Rutherfurd KJ& Cross ML (2001b) Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001. Med. Microbiol. Immunol. (Berlin) 190: 97–104.

    Google Scholar 

  • Gindreau E& Lonvaud-Funel A (1999) Molecular analysis of the region encoding the lytic system from Oenococcus oeni temperate bacteriophage variant phi10MC. FEMS Microbiol. Lett. 171: 231–238.

    Google Scholar 

  • Gindreau E, Torlois S& Lonvaud-Funel A (1997) Identification and sequence analysis of the region encoding the site-specific integration system from Leuconostoc oenos (Oenococcus oeni) temperate bacteriophage phi-10MC. FEMS Microbiol. Lett. 147: 279–285.

    Google Scholar 

  • Godon J, Delorme C, Ehrlich SD& Renault P (1992) Divergence of genomic sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp.cremoris. Appl. Environ. Microbiol. 58: 4045–4047.

    Google Scholar 

  • Gold RS, Meagher Mm, Tong S, Hutkins RW,& Conway T (1996) Cloning and expression of the Zymomonas mobilis 'Production of ethanol' genes in Lactobacillus casei. Curr. Microbiol. 33: 256–260.

    Google Scholar 

  • Goldin BR& Gorbach SL (1980) Effect of milk and Lactobacillus feeding on human intestinal bacterial enzyme activity. Am. J. Clin. Nutr. 39: 756–761.

    Google Scholar 

  • Goldin BR, Swenson L, Dwyer J, Sexton M& Gorbach S (1980) Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes. J. Natl. Cancer Inst. 64: 255–261.

    Google Scholar 

  • Gonzalez CF& Kunka BS (1983) Plasmid transfer in Pediococcus spp.: Intergeneric and intrageneric transfer of pIP501. Appl. Environ. Microbiol. 46: 81–89.

    Google Scholar 

  • Gonzalez CF& Kunka BS (1986) Evidence for plasmid linkage of raffinose utilization and associated β-galactosidase and sucrose hydrolase activity in Pediococcus pentosaceus. Appl. Environ. Microbiol. 51: 105–109.

    Google Scholar 

  • Gopal PK, Prasad J, Smart J& Gill HS (2001) In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int. J. Food Microbiol. 67: 207–216.

    Google Scholar 

  • Gottschalk G (1986) Bacterial Metabolism, 2nd ed. Springer, New York.

    Google Scholar 

  • Graham DC& McKay LL (1985) Plasmid DNA in strains of Pediococcus cerevisiae and Pediococcus pentosaceus. Appl. Environ. Microbiol. 50: 532–534.

    Google Scholar 

  • Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin AL& Brassart D (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65: 1071–1077.

    Google Scholar 

  • Greene JD& Klaenhammer TR (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Microbiol. 60: 4487–4494.

    Google Scholar 

  • Guedon G, Bourgoin F, Pebay M, Roussel Y, Colmin C, Simonet JM& Decaris B (1995) Characterization and distribution of two insertion sequences, IS 1191 and iso-IS 981, in Streptococcus thermophilus: does intergeneric transfer of insertion sequences occur in lactic acid bacteria co-cultures? Mol.Microbiol. 16: 69–78.

    Google Scholar 

  • Haller D, Blum S, Bode C, Hammes WP& and Schiffrin EJ (2000a) Activation of human PBMC by non-pathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect. Immun. 68: 752–759.

    Google Scholar 

  • Haller D, Bode C, Hammes WP, Pfeifer AMA, Schiffrin EJ& Blum S (2000b) Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47: 79–87.

    Google Scholar 

  • Hammes WP& Vogel RF (1995) The genus Lactobacillus. In: Wood BJB& Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria (pp 19–54). Chapman&Hall, London.

    Google Scholar 

  • Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG& Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30: 61–67.

    Google Scholar 

  • Hassan AN& Frank JF (2001) Starter cultures and their use. In: Marth EH& Steele JL (Eds) Applied Dairy Microbiology, 2nd edition (pp 151–206). Marcel Dekker, Inc, New York.

    Google Scholar 

  • Heilig HGH, Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL& deVos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68: 14–123.

    Google Scholar 

  • Hols P, Slos P, Dutot P, Reymund J, Chabot P, Delplace B, Delcour J& Mercenier A (1997) Efficient secretion of the model antigen M6-gp41E in Lactobacillus plantarum NCIMB 8826. Microbiology 143: 2733–41.

    Google Scholar 

  • Hughes D (2000) Evaluating genome dynamics: The constraints on rearrangements within bacterial genomes. Genome Biol. 1: Reviews 0006. 1–0006.8.

    Google Scholar 

  • Hofvendahl K& Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26: 87–107.

    Google Scholar 

  • Itoh T, Fujimoto Y, Kawai Y, Toba T& Saito T (1995) Inhibition of food-borne pathogenic bacteria by bacteriocins from Lactobacillus gasseri. Lett. Appl. Microbiol. 21: 137–141.

    Google Scholar 

  • Jiang TA, Mustapha A& Savaiano DA (1996) Improvement of lactose digestion in humans by ingestion of unfermented milk containing Bifidobacterium longum. J. Dairy Sci. 79: 750–757.

    Google Scholar 

  • Jobin M-P, Delmas F, Garmyn D, Divies C& Guzzo J. (1997) Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos. Appl. Environ. Microbiol. 63: 609–614.

    Google Scholar 

  • Jobin M-P, Garmyn D, Divies C& Guzzo J (1999) The Oenococcus oeni clpX homologue is a heat shock gene preferentially expressed in exponential growth phase. J. Bacteriol. 181: 6634–6641.

    Google Scholar 

  • Johnson JL, Phelps CF, Cummins CS, London J& Gasser F (1980) Taxonomy of the Lactobacillus acidophilus group. Int. J. System. Bacteriol. 30: 53–68.

    Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49: 209–224.

    Google Scholar 

  • Kandler O& Weiss N (1986) Genus Lactobacillus. In: Sneath PHA, Mair NS, Sharpe ME& Holt JG (Eds.) Bergey's Manual of Systematic Bacteriology, vol 2, 9th ed. (pp 1063–1065). Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  • Kaplan H& Hutkins RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 66: 2682–2684.

    Google Scholar 

  • Kim D& Day DF (1994) A new process for the production of clinical dextran by mixed-culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides. Enzyme Microb. Technol. 16: 844–48.

    Google Scholar 

  • Kim WJ, Ray B& Johnson MC (1992) Plasmid transfers by conjugation and electroporation in Pediococcus acidilactici. J. Appl. Bacteriol. 72: 201–207.

    Google Scholar 

  • Kirjavainen PV, El-Nezami HS, Salminen SJ, Ahokas JT& Wright PF (1999) The effect of orally administered viable probiotic and dairy lactobacilli on mouse lymphocyte proliferation. FEMS Immunol. Med. Microbiol. 26: 131–135.

    Google Scholar 

  • Kitazawa H, Tomioka Y, Matsumura K, Aso H, Mizugaki M, Itoh T& Yamaguchi T (1994) Expression of mRNA encoding IFN alpha in macrophages stimulated with Lactobacillus gasseri. FEMS Microbiol. Lett. 120: 315–321.

    Google Scholar 

  • Klaenhammer TR& Russell WM (2000) Species of the Lactobacillus acidophilus complex. In: Robinson RK, Batt C& Patel PD (Eds) Encyclopedia of Food Microbiology, Vol. 2, (pp 1151–1157). Academic Press, San Diego, CA.

    Google Scholar 

  • Kosikowski FV (1982) Cheese and Fermented Milk Foods, 2nd edn. Kosikowski and Assoc., Brooktondale, NY.

    Google Scholar 

  • Kullen MJ, Sanozky-Dawes RB, Crowell DC& Klaenhammer TR (2000) Use of DNA sequence of variable regions of the 16Sr-RNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J. Appl. Microbiol. 89: 511–518.

    Google Scholar 

  • Kunkee RE (1991) Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiol. Rev. 88: 55–72.

    Google Scholar 

  • Labarre C, Diviès C& Guzzo J (1996a) Genetic organization of the mle locus and identification of a mleR-like gene from Leuconostoc oenos. Appl. Environ. Microbiol. 62: 4493–4498.

    Google Scholar 

  • Labarre C, Guzzo J, Cavin JF& Diviès C (1996b) Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl. Environ. Microbiol. 62: 1274–1282.

    Google Scholar 

  • Lawrence RC, Thomas TD& Terzaghi BE (1976) Reviews of the progress of dairy science: cheese starters. J. Dairy Res. 43: 141–193.

    Google Scholar 

  • Leathers TD, Hayman GT& Cote GL 1995. Rapid screening of Leuconostoc mesenteroides mutants for elevated proportions of alternan to dextran. Curr. Microbiol. 31: 19–22.

    Google Scholar 

  • Le Bourgeois P, Lautier M, van den Berghe L, Gasson MJ& Ritzenthaler P (1995) Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL1403 reveals a large genome inversion. J. Bacteriol. 177: 2840–2850.

    Google Scholar 

  • Le Bourgeois P, Daveran-Mingot ML& Ritzenthaler P (2000) Genome plasticity among related Lactococcus strains: identification of genetic events associated with macrorestriction polymorphisms. J. Bacteriol. 182: 2481–2491.

    Google Scholar 

  • Leong-Morgenthaler P, Ruettener C, Mollet B&Hottinger H (1990) Construction of a physical map of Lactobacillus bulgaricus. Proc. Third Symp. Lactic Acid Bact. A28.

  • Leuschner RG& Hammes WP (1998) Degradation of histamine and tyramine by Brevibacterium linens during surface ripening of Munster cheese. J. Food Prot. 61: 874–878.

    Google Scholar 

  • Lima PT& Correia AM (2000) Genetic fingerprinting of Brevibacterium linens by pulsed-field gel electrophoresis and ribotyping. Curr. Microbiol. 41: 50–55.

    Google Scholar 

  • Link-Amster H, Rochat F, Saudan KY, Mignot O& Aeschlimann J-M (1994) Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 10: 55–64.

    Google Scholar 

  • Luchansky JB, Muriana PM& Klaenhammer TR (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus, and Propionibacterium. Mol. Microbiol. 2: 637–647.

    Google Scholar 

  • Maguin E, Prevost H, Ehrlich SD& Gruss A (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J. Bacteriol. 178: 931–5.

    Google Scholar 

  • Marchand J& Vandenplas Y (2000) Microorganisms administered in the benefit of the host: myths and facts. Eur. J. Gastroenterol. Hepatol. 12: 1077–1088.

    Google Scholar 

  • Mariné-Font A, Vidal-Carou MC, Izquierdo-Pulido M, Venciana-Nogués MT& Hernández-Jover T (1995) Les amines biogénes dans les aliments: leur signification, leur analyse. Ann. Fals. Exp. Chim. 88: 11–140.

    Google Scholar 

  • Marteau P& Rambaud JC (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12: 207–222.

    Google Scholar 

  • Martinez-Murcia AJ& Collins MD (1990) A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S ribosomal RNA. FEMS Microbiol. Lett. 70: 73–84.

    Google Scholar 

  • Matsuzaki T& Chin J (2000) Modulating immune responses with probiotic bacteria. Immunol. Cell. Biol. 78: 67–73.

    Google Scholar 

  • McKay LL (1985) Roles of plasmids in starter cultures. In: Gilliland SE (Ed) Bacterial Starter Cultures for Food (pp 159–174). CRC Press, Boca Raton, FL.

    Google Scholar 

  • Milk Industry Foundation (1998) Milk Facts. USA.

  • Mitsuoka T (1992) The human gastrointestinal tract. In: Wood BJB (Ed) The Lactic Acid Bacteria, Vol. 1: The Lactic Acid Bacteria in Health and Disease (pp 69–114). Elsevier Science Publishers, Essex.

    Google Scholar 

  • Monedero V, Poncet S, Mijakovic I, Fieulaine S, Dossonnet V, Martin-Verstraete I, Nessler S& Deutscher J (2001) Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism. EMBO J. 20: 3928–3937.

    Google Scholar 

  • Moreno-Arribas V& Lonvaud-Funel A (2001) Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiol. Lett. 195: 103–107.

    Google Scholar 

  • Mori K, Yamazaki K, Ishiyama T, Katsumata M, Kobayashi K, Kawai Y, Inoue N& Shinano H (1997) Comparative sequence analyses of the genes coding for 16S rRNA of Lactobacillus casei-related taxa. Int. J. Syst. Bacteriol. 47: 54-57.

    Google Scholar 

  • Mundt JO (1970) Lactic acid bacteria associated with raw plant food material. J. Milk Food Technol. 33: 550–553.

    Google Scholar 

  • Mundt JO, Graham WF& McCarty IE (1967) Spherical lactic acid producing bacteria of southern-grown raw and processed vegetables. Appl. Microbiol. 15: 1303–1308.

    Google Scholar 

  • National Cheese Institute (1998) Cheese Facts. USA.

  • Neeser J-R, Granato D, Rouvet M, Servin AL, Teneberg S& Karlsson K-A. (2000) Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology. 10: 1193–1199.

    Google Scholar 

  • Nicolas P, Bize L, Muri F, Hoebeke M, Rodolphe F, Ehrlich SD, Prum B& Bessières P (2002) Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res. 30: 1418–1426.

    Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S& von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 1–6.

    Google Scholar 

  • Orla-Jensen S (1924) La classificationdes des bactéries lactiques. Lait 4: 468–474.

    Google Scholar 

  • O'Sullivan DJ (2001) Screening of intestinal microflora for effective probiotic bacteria. J. Agric. Food Chem. 49: 1751–1760.

    Google Scholar 

  • Park YH, Hori H, Suzuki K, Osawa S& Komagata K (1987) Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences. J. Bacteriol. 169: 1801–1806.

    Google Scholar 

  • Pasteur L (1861) Sur la fermentation visquese et la fermentation butyrique. Bull. Soc. Chim. Paris 11: 30–31.

    Google Scholar 

  • Pederson CS& Albury MN (1969) The sauerkraut fermentation. NY State Agric. Expt. Sta. (Geneva, NY) Tech. Bull. Bulletin 824.

    Google Scholar 

  • Pedrosa MC, Golner BB, Goldin BR, Barakat S, Dallal GE& Russell RM (1995) Survival of yogurt-containing organisms and Lactobacillus gasseriA (ADH) and their effect on bacterial enzyme activity in the gastrointestinal tract of healthy and hypocholorhydric elderly subjects. Am. J. Clin. Nutr. 61: 353–359.

    Google Scholar 

  • Pérez PF, Minnaard J, Rouvet M, Knabenhans C, Brassart D, De Antoni GL& Schiffrin EJ (2001) Inhibition of Giardia intestinalis by extracellular factors from Lactobacilli: an in vitro study. Appl. Environ. Microbiol. 67: 5037–5042.

    Google Scholar 

  • Perrin C, Guimont C, Bracquart P& Gaillard JL (1999) Expression of a new cold shock protein of 21.5 kDa and of the major cold shock protein by Streptococcus thermophilus after cold shock. Curr. Microbiol. 39: 342–347.

    Google Scholar 

  • Poolman B, Royer TJ, Mainzer SE& Schmidt BF (1989) Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J. Bacteriol. 171: 244–253.

    Google Scholar 

  • Pouwels PH, Leer RJ, Shaw M, Heijne den Bak-Glashouwer MJ, Tielen FD, Smit E, Martinez B, Jore J& Conway PL (1998) Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. Int. J. Food Microbiol. 41: 155–67.

    Google Scholar 

  • Prasad J, Gill HS, Smart JB& Gopal PK (1998) Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J. 8: 993–1002.

    Google Scholar 

  • Rantsiou K, Phister T, McKay LL, Dunny G&Mills D (1999) Broad host range mobilization of plasmid derivatives by the lactococcal conjugal element pRS01. Proc. Sixth Symp. Lactic Acid Bact. E13.

  • Rattray FP& Fox PF (1999) Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review. J. Dairy Sci. 82: 891–909.

    Google Scholar 

  • Rattray FP, Fox PF& Healy A (1997) Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein. Appl. Environ. Microbiol. 63: 2468–2471.

    Google Scholar 

  • Reiter B& Oram JD (1982) Nutritional studies on cheese starter. 1. Vitamin and amino acid requirements of single strain starters. J. Dairy Res. 29: 63–68.

    Google Scholar 

  • Richards M& Macrae RM (1964) The significance of the use of hops in regard to the biological stability of beer . II. The development of resistance to hop resins by strains of lactobacilli. J. Inst. Brewing 70: 484–488.

    Google Scholar 

  • de Roos NM& Katan MB (2000) Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 71: 405–411.

    Google Scholar 

  • softwar e/other/primer3.html

  • Russell WM& Klaenhammer TR (2001a) Identification and cloning of gusA, encoding a new β-glucuronidase from Lactobacillus gasseri ADH. Appl. Environ. Microbiol. 67: 1253–1267.

    Google Scholar 

  • Russell WM& Klaenhammer TR (2001b) An efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosome via homologous recombination. Appl. Environ. Microbiol. 67: 4361–4364.

    Google Scholar 

  • Saavedra JM, Bauman NA, Oung I, Perman JA& Yolken RH (1994) Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 344: 1046–1049.

    Google Scholar 

  • Salama M, Sandine WE& Giovannoni S (1991) Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 57: 1313–1318.

    Google Scholar 

  • Salema M, Capucho I, Poolman B, San Romão MV& Dias MC (1996) In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni). J. Bacteriol. 178: 5537–5539.

    Google Scholar 

  • Sanders ME& Klaenhammer TR (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84: 319–331.

    Google Scholar 

  • Sandine WE (1988) New nomenclature of the non-rod-shaped lactic acid bacteria. Biochemie 70: 519–522.

    Google Scholar 

  • Schiffrin EJ, Rochat F, Link-Amster H, Aeschlimann J-M& Donnet-Hughes A (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci. 78: 491–497.

    Google Scholar 

  • Schleifer K-H (1987) Recent changes in the taxonomy of lactic acid bacteria. FEMS Microbiol. Rev. 46: 201–203.

    Google Scholar 

  • Schleifer KH& Ludwig W (1995) Phylogenetic relationships of lactic acid bacteria. In: Wood BJB& Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria (pp 7–18). Chapman&Hall, London.

    Google Scholar 

  • Serror P, Sasaki T, Ehrlich SD& Maguin E (2002) Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp . lactis with various plasmids. Appl. Environ. Microbiol. 68: 46–52.

    Google Scholar 

  • Server-Busson C, Foucaud C& Leveau J-Y (1999) Selection of dairy Leuconostoc isolates for improtant technological properties. J. Dairy Res. 66: 245–56.

    Google Scholar 

  • Sheih YH, Chiang BL, Wang LH, Liao CK& Gill HS (2001) Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. J. Am. Coll. Nutr. 20(2 Suppl): 149–56.

    Google Scholar 

  • Simpson WJ& Taguchi H (1995) The genus Pediococcus, with notes on the genera Tetratogenococcus and Aerococcus. In: Wood BJB& Holzapfel WH (Eds) The Genera of Lactic Acid Bacteria (pp 125–172). Chapman&Hall, London.

    Google Scholar 

  • Slos P, Dutot P, Reymund J, Kleinpeter P, Prozzi D, Kieny MP, Delcour J, Mercenier A& Hols P (1998) Production of cholera toxin B subunit in Lactobacillus. FEMS Microbiol. Lett. 169: 29–36.

    Google Scholar 

  • Solow BT& Somkuti GA (2000) Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system. Curr. Microbiol. 42: 122–128.

    Google Scholar 

  • Stuart M, Chou L-S& Weimer BC (1998) Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 65: 665–673.

    Google Scholar 

  • Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW& Wells JM (1998) Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect. Immun. 66: 3183–3189.

    Google Scholar 

  • Sutherland IW (1996) Extracellular polysaccharides. In: Rehm H-J, Reed G, Puhler A& Stadler P (Eds) Biotechnology, 2nd ed., Vol 6: Products of Primary Metabolism (pp 613–657). VCH, New York.

    Google Scholar 

  • Tallgren AH, Airaksinen U, von Weissenberg R, Ojamo H, Kuusisto J& Leisola M (1999) Exopolysaccharide-producing bacteria from sugar beets. Appl. Environm. Microbiol. 65: 862–64.

    Google Scholar 

  • Takahashi T, Nakagawa E, Nara T, Yajima T& Kuwata T (1998) Effects of orally ingested Bifidobacterium longum on the mucosal IgA response of mice to dietary antigens. Biosci. Biotechnol. Biochem. 62: 10–15.

    Google Scholar 

  • Tannock GW(2000) Identification of lactobacilli and bifidobacteria. Curr. Issues Intest. Microbiol. 1: 39–50.

    Google Scholar 

  • Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J& Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66: 2578–2588.

    Google Scholar 

  • Tatusov RL, DNatale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND& Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29: 22–28.

    Google Scholar 

  • Tejada-Simon MV& Pestka JJ (1999) Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J. Food Prot. 62: 1435–44.

    Google Scholar 

  • Tenreiro R, Santos MA, Paveia H& Vieira G (1994) Inter-strain relationships among wine leuconostocs and their divergence from other Leuconostoc species, as revealed by low frequency restriction fragment analysis of genomic DNA. J. Appl. Bacteriol. 77: 271–280.

    Google Scholar 

  • Thompson JK, McConville KJ, McReynolds C& Collins MA (1999) Potential of conjugal transfer as a strategy for the introduction of recombinant genetic material into strains of Lactobacillus helveticus. Appl. Environ. Microbiol. 65: 1910–1914.

    Google Scholar 

  • Tissier H (1900) Recherches sur la flore intestinale des nourrissons (etat normal et pathologique) Paris Thèses: 1–253.

  • Tissier H (1906) Traitement des infections intestinales par la méthode de la flore bactérienne de l'intestin. Crit. Rev. Soc. Biol. 60: 359–361.

    Google Scholar 

  • Tonon T, Bourdineaud J-P& Lonvaud-Funel A (2001) The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res. Microbiol. 152: 653–661.

    Google Scholar 

  • Tynkkynen S, Satokari R, Saarela M, Mattila-Sandholm T& Saxelin M (1999) Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl. Environ. Microbiol. 65: 3908–3914.

    Google Scholar 

  • Ummadi M& Weimer BC (2001) Tryptophan metabolism in Brevibacterium linens BL2. J. Dairy Sci. 84: 1773–1782.

    Google Scholar 

  • Valdes-Stauber N& Scherer S (1996) Nucleotide sequence and taxonomical distribution of the bacteriocin gene lin cloned from Brevibacterium linens M18. Appl. Environ. Microbiol. 62: 1283–1286.

    Google Scholar 

  • Vaughan EE, van den Bogaard PTC, Catzeddu P, Kuipers OP& de Vos WM (2001) Activation of silent gal genes in the lacgal regulon of Streptococcus thermophilus. J. Bacteriol. 183: 1184–1194.

    Google Scholar 

  • Vesa T, Pochart P and Marteau P (2000) Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis Mg 1363 in the human gastrointestinal tract. Aliment. Pharmacol. Ther. 14: 823–828.

    Google Scholar 

  • Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Perez-Martinez G& Deutscher J (2000) Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol. Microbiol. 36: 570–584.

    Google Scholar 

  • van Vuuren HJJ& Dicks LMT (1993) Leuconostoc oenos: A review. Am. J. Enol. Viticult. 44: 99–112.

    Google Scholar 

  • Wagner RD, Pierson C, Warner T, Dohnalek M, Hilty M& Balish E (2000) Probiotic effects of feeding heat-killed Lactobacillus acidophilus and Lactobacillus casei to Candida albicanscolonized immunodeficient mice. J. Food Prot. 63: 638–644.

    Google Scholar 

  • Walker DC, Aoyama K& Klaenhammer TR (1996) Electrotransformation of Lactobacillus acidophilus group A1. FEMS Microbiol. Lett. 138: 233–237.

    Google Scholar 

  • Weimer BC, Yi X&Brown R (2000) Autocatalytic processing of the protease from Brevibacterium linens BL2: a kinetic analysis for the degradation of casein. International Dairy Federation Biennial Cheese Flavor Conference, Banff, Alberta.

  • Wells JM, Robinson K, Chamberlain LM, Schofield km& Le Page RW (1996) Lactic acid bacteria as vaccine delivery vehicles. Antonie van Leeuwenhoek 70: 317–330.

    Google Scholar 

  • Yasui H, Shida K, Matsuzaki T& Yokokura T (1999) Immunomodulatory function of lactic acid bacteria. Antonie van Leeuwenhoek 76: 383–389.

    Google Scholar 

  • Ye JJ& Saier MH (1995) Cooperative binding of lactose and HPr(Ser-P) to the lactose:H+ permease of Lactobacillus brevis. Proc. Natl. Acad. Sci. U.S.A. 92: 417–421.

    Google Scholar 

  • Ye JJ, Reizer J, Cui X& Saier MH (1994) ATP-dependent phosphorylation of serine in HPr regulates lactose:H+ symport in Lactobacillus brevis. Proc. Natl. Acad. Sci. U.S.A. 91: 3102–3106.

    Google Scholar 

  • Yuki N, Watanabe K, Mike A, Tagami Y, Tanaka R, Ohwaki M& Morotomi M (1999) Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: selective isolation from faeces and identification using monoclonal antibodies. Int. J. Food Microbiol. 48: 51–57.

    Google Scholar 

  • Zapparoli G, Reguant C, Bordons A, Torriani S& Dellaglio F (2000) Genomic DNA fingerprinting of Oenococcus oeni strains by pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR. Curr. Microbiol. 40: 351–355.

    Google Scholar 

  • Ze-Ze L, Tenreiro R, Brito L, Santos MA& Paveia H (1998) Physical map of the genome of Oenococcus oeni PSU-1 and localization of genetic markers. Microbiology 144: 1145–1156.

    Google Scholar 

  • Ze-Ze L, Tenreiro R& Paveia H (2000) The Oenococcus oeni genome: Physical and genetic mapping of strain GMand comparison with the genome of a 'divergent' strain, PSU-1. Microbiology 146: 3195–3204.

    Google Scholar 

  • Zhou JS, Shu Q, Rutherfurd KJ, Prasad J, Gopal PK& Gill HS (2000a) Acute oral toxicity and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food Chem. Toxicol. 38: 153–61.

    Google Scholar 

  • Zhou JS, Shu Q, Rutherfurd KJ, Prasad J, Birtles MJ, Gopal PK& Gill HS (2000b) Safety assessment of potential probiotic lactic acid bacterial strains Lactobacillus rhamnosus HN001, Lb. acidophilus HN017, and Bifidobacterium lactis HN019 in BALB/c mice. Int. J. Food Microbiol. 56: 87–96.

    Google Scholar 

  • Zhou JS, Gopal PK& Gill HS (2001) Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int. J. Food Microbiol. 63: 81–90.

    Google Scholar 

  • Zuniga M, Pardo I& Ferrer S (1996) Transposons Tn916 and Tn925 can transfer from Enterococcus faecalis to Leuconostoc oenos. FEMS Microbiol. Lett. 135: 179–185.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaenhammer, T., Altermann, E., Arigoni, F. et al. Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82, 29–58 (2002). https://doi.org/10.1023/A:1020638309912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020638309912

Navigation