Skip to main content
Log in

Ultrafiltration of Myoglobin using Surface-Sulfonated Polysulfone Hollow Fiber

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The usage of ionic polysulfone (PSF) hollow fiber for the ultrafiltration of protein was investigated. The surface of polysulfone hollow fiber was sulfonated through the Blanc chloromethylation reaction to become anionic. Characterization of the modified hollow fiber was performed including ion exchange titration, pure water permeation, and molecular sieving measurement. The performance of ultrafiltration of protein was evaluated using myoglobin at various pH values. The results show that the water contact angles and hydraulic resistance are markedly decreased, indicating that the surface-modified PSF hollow fibers are more hydrophilic. In addition, the retention of myoglobin depends on the pH of the solution. At a pH higher than the isoelectric point of myoglobin, both hollow fiber and the protein have the same charge sign, and both the flux of the solution and the retention are the highest. The sulfonated PSF hollow fiber may be used as a biomaterial for protein separation and purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-F. P. Hamel, J. B. Hunter and S. K. Sikdar, Downstream processing and bioseparation: Recovery and purification of biological products, in ACS Symposium Series 419, American Chemical Society, Washington, DC, 1990.

    Google Scholar 

  2. J. A. Howell and M. Nyström, Fouling phenomena, in Membranes in Bioprocessing: Theory and Applications, J. A. Howell, V. Sanchez and R. W. Field (eds), Blackie Academic & Professional, London, 1993, Ch. 6.

    Google Scholar 

  3. I. Cabasso, E. Klein and J. K. Smith, Polysulfone hollow fibers. I. Spinning properties, J. Appl. Polym. Sci., 20, 2377-2394 (1976).

    Google Scholar 

  4. I. Cabasso, E. Klein and J. K. Smith, Polysulfone hollow fibers. II. Morphology, J. Appl. Polym. Sci., 21, 165-180 (1977).

    Google Scholar 

  5. I. Cabasso, K. Q. Robert, E. Klein and J. K. Smith, Porosity and pore size determination in polysulfone hollow fibers, J. Appl. Polym. Sci., 21, 1883-1900 (1977).

    Google Scholar 

  6. T. Liu, D. Zhang, S. Xu and S. Sourirajan, Solution-spun hollow fiber polysulfone and polyethersulfone ultrafiltration membranes, Separation Science and Technology, 27, 161-172 (1992).

    Google Scholar 

  7. Y. Nagase, A. Naruse and K. Matsui, Chemical modification of polysulphone: 1. Synthesis of polysulphone/polydimethylsiloxane graft copolymer, Polymer, 30, 1931-1937 (1989).

    Google Scholar 

  8. Y. Nagase, A. Naruse and K. Matsui, Chemical modification of polysulphone: 2. Gas and liquid permeability of polysulphone/polydimethylsiloxane graft copolymer membranes, Polymer, 31, 121-125 (1990).

    Google Scholar 

  9. J. Sheldon, The fine-structure of ultrafiltration membranes. I. Clean membranes, J. Membrane Sci., 62, 75-86 (1991).

    Google Scholar 

  10. J. M. Sheldon, I. M. Reed and C. R. Hawes, The fine-structure of ultrafiltration membranes. II. Protein fouled membranes, J. Membrane Sci., 62, 87-102 (1992).

    Google Scholar 

  11. J. D. Le Roux and D. R. Paul, Preparation of composite membranes by spin coating process, J. Membrane Sci., 74, 233-252 (1992).

    Google Scholar 

  12. E. Hinke and E. Staude, Streaming potential of microporous membranes made from homogeneously functionized polysulfone, J. Appl. Polym. Sci., 42, 2951-2958 (1991).

    Google Scholar 

  13. A. Higuchi, N. Iwata, M. Tsubaki and T. Nakagawa, Surface-modified polysulfone hollow fibers, J. Appl. Polym. Sci., 36, 1753-1767 (1988).

    Google Scholar 

  14. A. Higuchi, N. Iwata and T. Nakagawa, Surface-modified polysulfone hollow fibers. II. Fibers having CH2CH2CH2SO 3- segments and immersed in HCl solution, J. Appl. Polym. Sci., 40, 709-717 (1990).

    Google Scholar 

  15. A. Higuchi and T. Nakagawa, Surface-modified polysulfone hollow fibers. II. Fibers having a hydroxide group, J. Appl. Polym. Sci., 36, 1973-1979 (1988).

    Google Scholar 

  16. A. Higuchi, S. Mishima and T. Nakagawa, Separation of proteins by surface modified polysulfone membranes, J. Membrane Sci., 57, 175-185 (1991).

    Google Scholar 

  17. S. Nakao, H. Osada, H. Kurata, T. Tsuru and S. Kimura, Separation of proteins by charged ultrafiltration membranes, Desalination, 70, 191-205 (1988).

    Google Scholar 

  18. W. H. Daly, Modification of condensation polymers, J. Macromol. Sci., Chem., A22, 713-728 (1985).

    Google Scholar 

  19. C. Luca, S. Dragan, V. Barboiu and M. Dima, Chlorometylated polystyrene reaction with tris(2-hydroxyethyl)amine. I. Crosslinked polymers prepared by chloromethylated polystyrene with tris(2-hydroxyethyl)amine, J. Polym. Sci.: Polym. Chem. Ed., 18, 449-454 (1980).

    Google Scholar 

  20. H. Miyama, N. Marumiya, Y. Mori and H. Tanzawa, A new antithrombogenic heparinized polymer, J. Biomed. Mater. Res., 11, 251-265 (1977).

    Google Scholar 

  21. P. Zschocke and D. Quellmalz, Novel ion exchange membranes based on an aromatic polyethersulfone, J. Membrane Sci., 22, 325-332 (1985).

    Google Scholar 

  22. A. I. Vogel, Vogel's Textbook of Practical Organic Chemistry, 4th Edit., Longman, London, 1978, p. 636.

    Google Scholar 

  23. UDEL Polysulfone Design Engineering Data, Amoco Performance Products Inc., Section 1, 2.

  24. H. Miyama, K. Tanaka, Y. Nosaka, N. Fujii, H. Tanzawa and S. Nagaoka, Charged ultrafiltration membranes for permeation of proteins, J. Appl. Polym. Sci., 36, 925-933 (1988).

    Google Scholar 

  25. A. Suki, A. G. Fane and C. J. D. Fell, Flux decline in protein ultrafiltration, J. Membrane Sci., 21, 269-283 (1984).

    Google Scholar 

  26. K. J. Kim, A. G. Fane, R. Ben Aim, M. G. Liu, G. Jonsson, I. C. Tessaro, A. P. Broek and D. Bargeman, A comparative study of techniques used for porous membrane characterization: Pore characterization, J. Membrane Sci., 87, 35-46 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, MC., Lin, WC. Ultrafiltration of Myoglobin using Surface-Sulfonated Polysulfone Hollow Fiber. Journal of Polymer Research 9, 61–67 (2002). https://doi.org/10.1023/A:1020610919593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020610919593

Navigation