Skip to main content
Log in

Molecular Modeling of the 1,1-Cyclopropane- and 1,1-Cyclobutanedicarboxamide Systems. Insights into the Self-Assembly of Diamide Diacids in Water

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Modeling of the following compounds bis-(N-α-amido-L-phenylalaninyl)-1,1-cyclopropane dicarboxylate, 3, and bis-(N-α-amido-L-phenylalaninyl)-1,1-cyclobutane dicarboxylate, 4, were undertaken. The study involved construction and optimization of the precursory 1,1-dicarboxaldehydes and continued stepwise via the 1,1-dicarboxamides, the bis-N-(methyl)dicarboxamides, the bis(N-α-amidoglycinyl) dicarboxylates, the bis(N-α-amido-L-alaninyl) dicarboxylates and onto the targeted bis(N-α-amido-L-phenylalaninyl) dicarboxylates. Using the X-ray crystal structure of 4 (i.e., 4X) as a guide, we found that our approach was not able to reproduce the packable conformer of 4, via the computational methods employed. Nevertheless, an enhanced understanding of the intramolecular hydrogen bonding patterns available to these systems was obtained from IR and VT-NMR studies. In summary, the conformational preferences found in the 1,1-disubstituted cycloalkanes (3 and 4) direct their respective self-assembly processes by controlling the orientation of their amide NH populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Albert, J. S.; Goodman, M. S.; Hamilton, A. D. J. Amer. Chem. Soc. 1995,117, 1143-1144.

    Google Scholar 

  2. Rebek, Jr., J.; Williams, K. J. Amer. Chem. Soc. 1987,109, 5033-5035 and references therein.

    Google Scholar 

  3. Lee, D. H; Granja, J. R.; Martinez, J. A.; Severin. K.; Ghadiri, M. R. Nature (London) 1996,382, 525.

    Google Scholar 

  4. Appella, D. H.; Barchi, Jr., J. J.; Durell, S. R.; Gellman, S. H. J. Amer. Chem. Soc. 1999,121, 2309-2310.

    Google Scholar 

  5. Bergeron, R. J.; Phanstiel, IV, O.; Yao, G. W.; Milstein, S.; Weimar. W. R. J. Amer. Chem. Soc. 1994,116, 8479-8484.

    Google Scholar 

  6. Bergeron, R. J.; Yao, G. W.; Erdos, G. W.; Milstein, S.; Gao, F.; Weimar, W. R.; Phanstiel, IV, O. J. Amer. Chem. Soc. 1995,117, 6658-6665.

    Google Scholar 

  7. Bergeron, R. J.; Yao, G. W.; Erdos, G. W.; Milstein, S.; Gao, F.; Rocca, J.; Weimar, W. R.; Price, H. L.; Phanstiel, O. IV; Bioorg. Med. Chem. 1997,5, 2049-2061.

    Google Scholar 

  8. Phanstiel, O., IV; Lachicotte, R. J.; Torres, D.; Richardson, M.; Matsui, H.; Schaffer, H.; Adar, F.; Liu, J.; Seconi, D. Chem. Mater. 2001,13, 264-272.

    Google Scholar 

  9. Matsui, H.; Gologan, B.; Schaffer, H.; Adar, F.; Seconi, D.; Phanstiel, O. IV, Langmuir 2000,16, 3148-3153.

    Google Scholar 

  10. Olah, G. A.; Reddy, V.; Prakash, G. K. S. Chemistry of the Cyclo-propyl Group, Part 2; Z. Rappoport, ed.; Wiley: Chichester, UK, 1995; pp. 813-859.

    Google Scholar 

  11. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Kluwer Academic/Plenum: NY, 2000; pp. 284-285.

    Google Scholar 

  12. (a) Stewart, J. J. P. J. Comp. Chem. 1989,10, 209; (b) J. Comp. Chem. 1989, 10, 221; (c) Zheng, Y.-J.; Merz, K. M., Jr., J. Comp. Chem. 1992, 13, 1151–1169; (d) Rzepa, H. S.; Yi, M. Y. J. Chem. Soc. Perkin Trans. 1990, 2, 943.

    Google Scholar 

  13. Wavefunction, Inc., 18401 Von Karman, Suite 370, Irvine, CA 92612.

  14. Childs, R. F.; Faggiani, R.; Lock, C. J.; Mahendran, M.; Zweep, S. D. J. Amer. Chem. Soc. 1986,108, 1692.

    Google Scholar 

  15. Caminati, W.; Fantoni, A. C.; Schafer, L.; Siam, K.; Van Alsenoy, C. J. Amer. Chem. Soc. 1986,108, 4364-4367.

    Google Scholar 

  16. Emsley; J.; Freeman, N. J.; Parker, R. J.; Dawes, H. M.; Hurthouse, M. B. J. Chem. Soc. Perkin Trans. 1 1986, pp. 471-473.

    Google Scholar 

  17. Hypercube, Inc., 419 Phillip Street, Waterloo, Ontario, Canada N2L 3X2.

  18. Gung, B. W.; Zhu, Z.; Zou, D.; Everingham, B.; Oyeamalu, A.; Crist, R. M.; Baudlier, J. J. Org. Chem. 1998,63, 5750-5761 and references therein.

    Google Scholar 

  19. (a) Gellman, S. H.; Dado, G. P.; Liang, G.; Adams, B. R. J. Amer. Chem. Soc. 1991,113, 1164-1173; (b) Dado, G. P.; Gellman, S. H. J. Amer. Chem. Soc. 1994, 116, 1054–1062.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitbeil, F.W., Seconi, D., Duggan, C. et al. Molecular Modeling of the 1,1-Cyclopropane- and 1,1-Cyclobutanedicarboxamide Systems. Insights into the Self-Assembly of Diamide Diacids in Water. Structural Chemistry 13, 443–453 (2002). https://doi.org/10.1023/A:1020561420422

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020561420422

Navigation