Skip to main content
Log in

Supramolecular Structure and Hydrogen Bonding of N,N′-Bis(trifluoromethylsulfonyl)amides of Dicarboxylic Acids

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Quantum-chemical DFT simulation of N,N’-bis(trifluoromethylsulfonyl)amides of dicarboxylic acids TfNHСO(CH2)nCONHTf (n = 0–3) has allowed evaluation of their ability to form intramolecular NH···О=C or NH···О=S hydrogen bonds depending on the length of the carbon chain (CH2)n. Self-associates forming the supramolecular structure in the gas phase have been cyclic dimers with intermolecular NH···О=C or NH···О=S hydrogen bonds, containing no intramolecular H-bonds. According to IR spectroscopy data, the compounds with n = 3, 4 have formed self-associates with the NH···О=C bonds in the solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Konovalova, S.A., Avdeenko, A.P., and Santalova, A.A., Russ. J. Org. Chem., 2021, vol. 57, p. 551. https://doi.org/10.1134/S1070428021040084

    Article  CAS  Google Scholar 

  2. Nagalakshmamma, V., Varalakshmi, M., Umapriya, K., Venkataswamy, M., Venkataramaiah, C., Raju, K.T., Chalapathi, P.V., and Raju, C., J. Chin. Chem. Soc., 2020, vol. 67, p. 1289. https://doi.org/10.1002/jccs.201900434

    Article  CAS  Google Scholar 

  3. Shafique, M., Hameed, S., Naseer, M.M., and Al-Masoudi, N.A., Mol. Divers., 2018, vol. 22, p. 957. https://doi.org/10.1007/s11030-018-985

    Article  CAS  PubMed  Google Scholar 

  4. Saha, T., Hossain, M.S., Saha, D., Lahiri, M., and Talukdar, P., J. Am. Chem. Soc., 2016, vol. 138, p. 7558. https://doi.org/10.1021/jacs.6b01723

    Article  CAS  PubMed  Google Scholar 

  5. Tolstikova, L.L., Shainyan, B.A., Sterkhova, I.V., and Belovezhets, L.A., Russ. J. Org. Chem., 2020, vol. 56, p. 63. https://doi.org/10.1134/S107042802001011X

    Article  CAS  Google Scholar 

  6. Ghosh, K., Sarkar, T., Samadder, A., and Khuda-Bukhsh, A.R., New J. Chem., 2012, vol. 36, p. 2121. https://doi.org/10.1039/C2NJ40391A

    Article  CAS  Google Scholar 

  7. Kelly, J.K., Henderson, W., and Nicholson, B.K., Polyhedron, 2007, vol. 26, p. 434. https://doi.org/10.1016/j.poly.2006.06.036

    Article  CAS  Google Scholar 

  8. Bisai, A., Prasad, B.A.B., and Singh, V.K., Arkivoc, 2007, p. 20. https://doi.org/10.3998/ark.5550190.0008.503

  9. Corey, E.J., Sarshar, S., and Lee, D.-H., J. Am. Chem. Soc., 1994, vol. 116, p. 12089. https://doi.org/10.1021/ja00105a074

    Article  CAS  Google Scholar 

  10. Corey, E.J. and Letaric, M.A., J. Am. Chem. Soc., 1995, vol. 117, p. 9616. https://doi.org/10.1021/ja00142a051

    Article  CAS  Google Scholar 

  11. Cortez, N.A., Aguirre, G., Parra-Hake, M., and Somanathan, R., Tetrahedron Lett., 2009, vol. 50, p. 2228. https://doi.org/10.1016/j.tetlet.2009.02.183

    Article  CAS  Google Scholar 

  12. Chanawanno, K., Holstrom, C., Crandall, L.A., Dodge, H., Nemykin, V.N., Herrick, R.S., and Ziegler, C.J., Dalton Transact., 2016, vol. 45, p. 14320. https://doi.org/10.1039/C6DT02669A

    Article  CAS  Google Scholar 

  13. White, D.J., Cronin, L., Parsons, S., Robertson, N., Tasker, P.A., and Bisson, A.P., Chem. Commun., 1999, p. 1107. https://doi.org/10.1039/A902196E

  14. Squires, C., Baxter, C.W., Campbell, J., Lindoy, L.F., McNab, H., Parkin, A., Parsons, S., Tasker, P.A., Wei, G., and White, D.J., Dalton Transact., 2006, p. 2026. https://doi.org/10.1039/B515650P

  15. Trepka, R.D., Harrington, J.K., and Belisle, J.W., J. Org. Chem., 1974, vol. 39, p. 1094. https://doi.org/10.1021/jo00922a017

    Article  CAS  Google Scholar 

  16. Shainyan, B.A. and Tolstikova, L.L., Chem. Rev., 2013, vol. 113, p. 699. https://doi.org/10.1021/cr300220h

    Article  CAS  PubMed  Google Scholar 

  17. Haas, A., Klare, C., Betz, P., Bruckmann, J., Krüger, C., Tsay, Y.-H., and Aubke, F., Inorg. Chem., 1996, vol. 35, p. 1918. https://doi.org/10.1021/ic9507934

    Article  CAS  Google Scholar 

  18. Sterkhova, I.V., Mescheryakov, V.I., Chipanina, N.N., Kukhareva, V.A., Aksamentova, T.N., Turchaninov, V.K., and Shainyan, B.A., Russ. J. Gen. Chem., 2006, vol. 76, p. 583. https://doi.org/10.1134/S1070363206040165

    Article  CAS  Google Scholar 

  19. Oznobikhina, L.P., Chipanina, N.N., Tolstikova, L.L., Bel’skikh, A.V., Kukhareva, V.A., and Shainyan, B.A., Russ. J. Gen. Chem., 2009, vol. 79, p. 435. https://doi.org/10.1134/S1070363209030165

    Article  CAS  Google Scholar 

  20. Fatima, M., Liaqat, F., Shabbir, M., Ahmad, I., Akhter, Z., Fatima, R., and Yousaf, S., J. Mol. Struct., 2021, vol. 1239, p. 130471. https://doi.org/10.1016/j.molstruc.2021.130471

    Article  CAS  Google Scholar 

  21. Żabiński, J., Maciejewska, D., and Kaźmierczak, P., J. Mol. Struct., 2009, vol. 923, p. 132. doi. https://doi.org/10.1016/j.molstruc.2009.02.015

    Article  CAS  Google Scholar 

  22. Remko, M., Herich, P., Gregán, F., and Kožisek, J., J. Mol. Struct., 2014, vol. 1059, p. 124. https://doi.org/10.1016/j.molstruc.2013.11.047

    Article  CAS  Google Scholar 

  23. Hubbard, T.A., Brown, A.J., Bell, I.A.W., and Cockroft, S.L., J. Am. Chem. Soc., 2016, vol. 138, p. 15114. https://doi.org/10.1021/jacs.6b09130

    Article  CAS  PubMed  Google Scholar 

  24. Chipanina, N.N., Oznobikhina, L.P., Sterkhova, I.V., Ganin, A.S., and Shainyan, B.A., J. Mol Struct., 2020, vol. 1219, p. 128534. https://doi.org/10.1016/j.molstruc.2020.128534

    Article  CAS  Google Scholar 

  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, Y., Honda, O., Kitao, H., Nakai, M., Klene, Li, X., Knox, J.E., Hratchian, J.B., Cross, T., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 09, Revision E.01, Gaussian, Inc., Pittsburgh, PA, 2009.

Download references

Funding

This study was financially supported by the Russian Science Foundation (grant 22-13-00036, spectral studies) and performed using the equipment of Baikal Analytical Center for Collective Usage, Siberian Branch, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Shainyan.

Ethics declarations

B. A. Shainyan is a member of Editorial Board of the Russian Journal of General Chemistry. Other authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chipanina, N.N., Tolstikova, L.L. & Shainyan, B.A. Supramolecular Structure and Hydrogen Bonding of N,N′-Bis(trifluoromethylsulfonyl)amides of Dicarboxylic Acids. Russ J Gen Chem 92, 1437–1442 (2022). https://doi.org/10.1134/S1070363222080102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222080102

Keywords:

Navigation