Skip to main content
Log in

Investigating the Mechanism of Electron Transfer to the Binuclear Center in Cu-Heme Oxidases

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Novel experimental evidence is presented further supporting the hypothesis that, starting with resting oxidized cytochrome c oxidase, the internal electron transfer to the oxygen binding site is kinetically controlled. The reduction of the enzyme was followed spectroscopically and in the presence of NO or CO, used as trapping ligands for reduced cytochrome a3; ruthenium hexamine was used as a spectroscopically silent electron donor. Consistent with the high combination rate constant for reduced cytochrome a3, NO proved to be a very efficient trapping ligand, while CO did not. The results are discussed in view of two alternative (thermodynamic and kinetic) hypotheses of control of electron transfer to the binuclear (cyt.a3-CuB) center. Fulfilling the prediction of the kinetic control hypothesis: i) the reduction of cytochrome a3 and ligation are synchronous and proceed at the intrinsic rate of cytochrome a3 reduction, ii) the measured rate of formation of the nitrosyl derivative is independent of the concentration of both the reductant and NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gibson, Q., Greenwwod, C., Wharton, D. C., and Palmer G. (1965). “The reactions of cytochrome oxidase with cytochrome c,” J. Biol. Chem. 240, 888-894.

    PubMed  Google Scholar 

  2. Sarti, P., Antonini, G., Malatesta, F., Vallone, B., and Brunori, M. (1988). ‘Is the internal electron transfer the rate-limiting step in the catalytic cycle of cytochrome c oxidase?”, Ann. N.Y Acad. Sci. 550, 161-166.

    PubMed  Google Scholar 

  3. Malatesta, F., Sarti, P., Antonini, G., Vallone, B., and Brunori, M. (1990). “Electron transfer to the binuclear center in cytochrome oxidase: catalytic significance and evidence for an additional intermediate,” Proc. Natl. Acad. Sci USA 87, 7410-7413.

    PubMed  Google Scholar 

  4. Han, S., Ching, Y., and Rousseau, D. (1990). “Primary intermediate in the reaction of oxygen with fully reduced cytochrome c oxidase,” Proc. Natl. Acad. Sci USA 87, 2491-2495.

    PubMed  Google Scholar 

  5. Oliveberg, M., and Malmström, Bo, G. (1991). “Internal electron transfer in cytochrome c oxidase: evidence for a rapid equilibrium between cytochrome a and the bimetallic site,” Biochemistry 30, 7053-7057.

    PubMed  Google Scholar 

  6. Verkhosvky, M. I., Morgan, J. E., and Wikström, M. (1994). “Oxygen binding and activation: early steps in the reaction of oxygen with cytochrome c oxidase,” Biochemistry 33, 3079-3086.

    PubMed  Google Scholar 

  7. Woodruff, W. H. (1993). “Coordination dynamics of hemecopper oxidases. The ligand shuttle and the control and coupling of electron transfer and proton translocation,” J. Bioenerg. Biomembr., 25, 177-188.

    PubMed  Google Scholar 

  8. Tsukihara, T., Aoyama, H., Yamashita, E., Tomikazi, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1995). “Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å,” Science 269, 1069-1074.

    PubMed  Google Scholar 

  9. Verkhovsky, M. I., Morgan, J. E., and Wikström, M. (1995). “Control of electron delivery to the oxygen reduction site of cytochrome c oxidase: a role for protons,” Biochemistry 34, 7483-7491.

    PubMed  Google Scholar 

  10. Palmer, G., Baker, G. M., and Noguchi, M. (1988). “The rapid and slow forms of cytochrome oxidase,” Chem. Scr. 28A, 41-46.

    Google Scholar 

  11. Moody, A. J. (1996). “As prepared' forms of fully oxidised haem/Cu terminal oxidases. Review,” Biochim. Biophys. Acta 1276, 6-20.

    PubMed  Google Scholar 

  12. Soulimane, T., and Buse, G. (1995). “Integral cytochrome c oxidase: preparation and progress towards a three-dimensional crystallization,” Eur. J. Biochem. 227, 588-595.

    PubMed  Google Scholar 

  13. Blackmore, R. S., Greenwood, C., and Gibson, Q. H. (1991). “Studies of the primary oxygen intermediate in the reaction of fully reduced cytchrome oxdase,” J. Biol. Chem. 266, 19245-19249.

    Google Scholar 

  14. Giuffrè, A., Sarti, P., D'Itri, E., Buse, G., Soulimane, T., and Brunori, M. (1996). “On the mechanism of inhibition of cytochrome c oxidase by nitric oxide,” J. Biol. Chem. 271, 33404-33408.

    PubMed  Google Scholar 

  15. Gibson Q. H., and Greenwood, C. (1963). “Reactions of cytochrome oxidase with oxygen and carbon monoxide,” Biochem. J. 86, 541-555.

    PubMed  Google Scholar 

  16. Brunori, M., Giuffré, A., D'Itri, E., and Sarti, P. (1997). “Internal electron transfer in Cu-heme oxidases: thermodynamic or kinetic control?,” J. Biol. Chem. 272, 19870-19874.

    PubMed  Google Scholar 

  17. Blair, D. F., Ellis, W. R., Wang, H., Gray, H. B., and Chan, S. I. (1986). “Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials,” J. Biol. Chem. 261, 11524-11537.

    PubMed  Google Scholar 

  18. Hallen, S., Brzezinski, P., and Malmsrom B. G. (1994). “Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site,” Biochemistry 33, 1467-1472

    PubMed  Google Scholar 

  19. Brunori, M., Antonini, G., Giuffrè, A., Malatesta, F., Nicoletti, F., Sarti, P., and Wilson, M. T. (1994). “Electron transfer and ligand binding in terminal oxidases: impact of recent structural information,” FEBS Lett. 350, 164-168.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunori, M., Giuffré, A., Malatesta, F. et al. Investigating the Mechanism of Electron Transfer to the Binuclear Center in Cu-Heme Oxidases. J Bioenerg Biomembr 30, 41–45 (1998). https://doi.org/10.1023/A:1020503410377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020503410377

Navigation