Skip to main content
Log in

Bound states in the Kratzer plus polynomial potentials and the new form of perturbation theory

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The Schrödinger equation with potentials of the Kratzer plus polynomial type (say, quartic V(r) = Ar 4 + Br 3 + Cr 2 + Dr + F/r + G/r 2 etc.) is considered and a new method of exact construction of some of its bound states is presented. Our approach is made feasible via a combination of the traditional use of the infinite series ψ(r)(terminated rigorously after N + 1 terms at certain specific couplings and energies) with several new ideas. We proceed in two steps. Firstly, in the strong coupling regime with G → ∞, we find the exact, complete and compact unperturbed solution of our N + 1 coupled and nonlinear algebraic conditions of the termination. Secondly, we adapt the current Rayleigh–Schrödinger perturbation theory to our nonlinear equations and define the general G < ∞ bound states via an innovated, triple perturbation series. In its tests we show how all the corrections appear in integer arithmetics and remain, therefore, exact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.H. Aly and A.O. Barut, Phys. Lett. A 145 (1990) 299.

    Article  Google Scholar 

  2. K. Bay and W. Lay, J. Math. Phys. 38 (1997) 2127.

    Article  Google Scholar 

  3. C.M. Bender and S. Boettcher, J. Phys. A: Math. Gen. 31 (1998) L273-7.

    Article  Google Scholar 

  4. C.M. Bender and T.T.S. Wu, Phys. Rev. 184 (1969) 1231.

    Article  Google Scholar 

  5. N. Bessis and G. Bessis, J. Math. Phys. 38 (1997) 5483.

    Article  Google Scholar 

  6. R.F. Bishop and M. Flynn, Phys. Rev. A 38 (1989) 2211.

    Article  Google Scholar 

  7. S.N. Biswas, K. Datta, R.P. Saxena, P.K. Srivastava and V.S. Varma, J. Math. Phys. 14 (1973) 1190.

    Article  Google Scholar 

  8. Y. Brihaye, N. Devaux and P. Kosinski, Int. J. Mod. Phys. A 10 (1995) 4633.

    Article  Google Scholar 

  9. Y. Brihaye and P. Kosinski, Mod. Phys. Lett. A 13 (1998) 1445.

    Article  CAS  Google Scholar 

  10. B.L. Burrows, M. Cohen and T. Feldmann, J. Math. Phys. 35 (1994) 5572.

    Article  Google Scholar 

  11. A.C. Cadavid and R.J. Finkelstein, J. Math. Phys. 37 (1996) 3675.

    Article  Google Scholar 

  12. K.M. Case, Phys. Rev. 80 (1950) 797.

    Article  Google Scholar 

  13. R.N. Chaudhuri, M. Tater and M. Znojil, J. Phys. A: Math. Gen. 20 (1987) 2448.

    Article  Google Scholar 

  14. E. Delabaere and F. Pham, Ann. Phys. 261 (1997) 180.

    Article  CAS  Google Scholar 

  15. A.N. Drozdov, J. Phys. A: Math. Gen. 28 (1995) 445.

    Article  Google Scholar 

  16. D.A. Estrin, F.M. Fernandez and E.A. Castro, Phys. Lett. A 130 (1988) 330.

    Article  Google Scholar 

  17. F.M. Fernández, Phys. Lett. A 194 (1994) 343.

    Article  Google Scholar 

  18. F.M. Fernández and R. Guardiola, J. Phys. A: Math. Gen. 30 (1997) 7187.

    Article  Google Scholar 

  19. G.P. Flessas and A. Watt, J. Phys. A: Math. Gen. 14 (1981) L315.

    Article  Google Scholar 

  20. S. Flügge, Practical Quantum Mechanics, Vol. 1 (Springer, New York, 1971) p. 178.

    Google Scholar 

  21. W.M. Frank, D.J. Land and R.M. Spector, Rev. Mod. Phys. 43 (1971) 36.

    Article  CAS  Google Scholar 

  22. D.D. Frantz, D.R. Herschbach and J.D. Morgan III, Phys. Rev. A 40 (1989) 1175.

    Article  CAS  Google Scholar 

  23. E. Fues, Ann. Physik 80 (1926) 367.

    CAS  Google Scholar 

  24. A. Hautot, Phys. Lett. A 38 (1972) 305.

    Article  Google Scholar 

  25. A. Hautot, Phys. Rev. D 33 (1986) 437.

    Article  Google Scholar 

  26. F.T. Hioe, D. MacMillan and E.W. Montroll, Phys. Rep. 43 (1978) 305.

    Article  Google Scholar 

  27. E.L. Ince, Ordinary Differential Equations (Dover, New York, 1956).

    Google Scholar 

  28. I.A. Ivanov, Phys. Rev. A 54 (1996) 81.

    Article  CAS  Google Scholar 

  29. J. Killingbeck, J. Phys. A: Math. Gen. 19 (1986) 2903.

    Article  Google Scholar 

  30. H. Kleinert and W. Janke, Phys. Lett. A 206 (1995) 283.

    Article  CAS  Google Scholar 

  31. A. Kratzer, Z. Physik 3 (1920) 289.

    Article  CAS  Google Scholar 

  32. T. Kunihiro, Phys. Rev. D 57 (1998) R2035.

    Article  CAS  Google Scholar 

  33. W. Lay, J. Math. Phys. 38 (1997) 639.

    Article  Google Scholar 

  34. E. Magyari, Phys. Lett. A 81 (1981) 116.

    Article  Google Scholar 

  35. S. Mandal, J. Phys. A: Math. Gen. 31 (1998) L501.

    Article  CAS  Google Scholar 

  36. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1961).

    Google Scholar 

  37. P. Roy, B. Roy and R. Roychoudhury, Phys. Lett. A 144 (1990) 55.

    Article  Google Scholar 

  38. R. Roychoudhury, Y.P. Varshni and M. Sengupta, Phys. Rev. A 42 (1990) 184.

    Article  CAS  Google Scholar 

  39. B. Simon, Int. J. Quant. Chem. 21 (1982) 3.

    Article  Google Scholar 

  40. L. Skála, J. Čížek, J. Dvořák and V. Špirko, Phys. Rev. A 53 (1996) 2009.

    Article  Google Scholar 

  41. L. Skála, J. Čížek, V. Kapsa and E.J. Weniger, Phys. Rev. A 56 (1997) 4471.

    Article  Google Scholar 

  42. F.H. Stillinger, J. Math. Phys. 20 (1979) 1891.

    Article  Google Scholar 

  43. M. Tater, J. Phys. A: Math. Gen. 20 (1987) 2483.

    Article  Google Scholar 

  44. M. Tater and A.V. Turbiner, J. Phys. A: Math. Gen. 26 (1993) 697.

    Article  Google Scholar 

  45. A.V. Turbiner, Comm. Math. Phys. 118 (1988) 467.

    Article  Google Scholar 

  46. A.V. Turbiner and A.G. Ushveridze, J. Math. Phys. 29 (1988) 2053.

    Article  Google Scholar 

  47. A.V. Turbiner, Phys. Rev. A 50 (1994) 5335.

    Article  CAS  Google Scholar 

  48. A.G. Ushveridze, Quasi-exactly Solvable Models in Quantum Mechanics (IOPP, Bristol, 1994).

    Google Scholar 

  49. A. Voros, J. Phys. A: Math. Gen. 27 (1994) 4653.

    Article  Google Scholar 

  50. E. Vrscay, Theor. Chim. Acta 73 (1988) 365.

    Article  Google Scholar 

  51. E.J. Weniger, Ann. Phys. (NY) 246 (1996) 133.

    Article  CAS  Google Scholar 

  52. V.I. Yukalov and E.P. Yukalova, J. Phys. A: Math. Gen. 29 (1996) 6429.

    Article  Google Scholar 

  53. M. Znojil, Lett. Math. Phys. 5 (1981) 405.

    Article  Google Scholar 

  54. M. Znojil, J. Phys. A: Math. Gen. 27 (1994) 4945.

    Article  Google Scholar 

  55. M. Znojil, J. Math. Phys. 38 (1997) 5087.

    Article  Google Scholar 

  56. M. Znojil, Anharmonic oscillator in the new perturbative picture (JINR, Dubna, Russia, 1989), Communication No. E5-89-726, unpublished.

    Google Scholar 

  57. M. Znojil and P.G.L. Leach, J. Math. Phys. 33 (1992) 2785.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Znojil, M. Bound states in the Kratzer plus polynomial potentials and the new form of perturbation theory. Journal of Mathematical Chemistry 26, 157–172 (1999). https://doi.org/10.1023/A:1019185911999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019185911999

Keywords

Navigation