Skip to main content
Log in

Exactly solvable potentials and the bound-state solution of the position-dependent mass Schrödinger equation in D-dimensional space

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a transformation method using properties of classical orthogonal polynomials to construct exactly solvable potentials that provide bound-state solutions of Schrödinger equations with a position-dependent mass in D-dimensional space. The important feature of the method is that it favors the Zhu—Kroemer ordering of ambiguities for a radially symmetric mass function and potential. This is illustrated using hypergeometric polynomials and the associated Legendre polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Slater, Phys. Rev., 76, 1592–1601 (1949).

    Article  ADS  MATH  Google Scholar 

  2. D. J. Ben Daniel and C. B. Duke, Phys. Rev., 152, 683–692 (1966).

    Article  ADS  Google Scholar 

  3. O. von Roos, Phys. Rev. B, 27, 7547–7552 (1983).

    Article  ADS  Google Scholar 

  4. T. Gora and F. Williams, Phys. Rev., 177, 1179–1182 (1969).

    Article  ADS  Google Scholar 

  5. Q.-G. Zhu and H. Kroemer, Phys. Rev. B, 27, 3519–3527 (1983).

    Article  ADS  Google Scholar 

  6. T. L. Li and K. J. Kuhn, Phys. Rev. B, 47, 12760–12770 (1993).

    Article  ADS  Google Scholar 

  7. M. R. Geller and W. Kohn, Phys. Rev. Lett., 70, 3103–3106 (1993).

    Article  ADS  Google Scholar 

  8. A. de Souza Dutra and C. A. S. Almeida, Phys. Lett. A, 275, 25–30 (2000); arXiv:quant-ph/0306065v1 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. D. Alhaidari, Phys. Rev. A, 66, 042116 (2002).

    Google Scholar 

  10. A. de Souza Dutra, J. Phys. A: Math. Gen., 39, 203–208 (2006).

    Article  ADS  MATH  Google Scholar 

  11. O. Mustafa and S. H. Mazharimousavi, Internat. J. Theoret. Phys., 46, 1786–1796 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. H. Rajbongshi and N. N. Singh, J. Modern Phys., 4, 1540–1545 (2013)

    Article  ADS  Google Scholar 

  13. H. Rajbongshi and N. N. Singh, Acta Phys. Polon. B, 45, 1701–1712 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Rajbongshi and N. N. Singh, Theor. Math. Phys., 183, 715–729 (2015).

    Article  Google Scholar 

  15. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure, Les Edition de Physique, Paris (1988).

    Google Scholar 

  16. P. Harrison, QuantumWells, Wires, and Dots: Theoretical and Computational Physics, Wiley, eds (2000).

    Google Scholar 

  17. L. Serra and E. Lipparini, Europhys. Lett., 40, 667–672 (1997).

    Article  ADS  Google Scholar 

  18. F. A. de Saavedra, J. Boronat, A. Polls, and A. Fabrocini, Phys. Rev. B, 50, 4248–4251 (1994); arXiv:cond-mat/9403075v1 (1994).

    Article  ADS  Google Scholar 

  19. P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer, Berlin (1980).

    Book  Google Scholar 

  20. B. Gönül, O. Özer, B. Gönül, and F. Üzgün, Modern Phys. Lett. A, 17, 2453–2465 (2002); arXiv:quant-ph/ 0211113v3 (2002).

    Article  ADS  MATH  Google Scholar 

  21. C. Tazcan and R. Sever, J. Math. Chem., 42, 387–395 (2007).

    Article  MathSciNet  Google Scholar 

  22. C. Quesne, SIGMA, 5, 046 (2009).

    MathSciNet  Google Scholar 

  23. H. Panahi and Z. Bakhshi, Acta Phys. Polon. B, 41, 11–21 (2010).

    Google Scholar 

  24. M. Jafarpour and B. Ashtari, Adv. Stud. Theoret. Phys., 5, 131–142 (2011).

    MathSciNet  MATH  Google Scholar 

  25. R. Sever, C. Tezcan, Ö. Ye_ilta_, and M. Bucurgat, Internat. J. Theoret. Phys., 47, 2243–2248 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. C. Tezcan, R. Sever, and Ö. Ye_ilta_, Internat. J. Theoret. Phys., 47, 1713–1721 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. S. Meyur, Bulg. J. Phys., 38, 357–363 (2011).

    MathSciNet  Google Scholar 

  28. R. Koç and H. Tütüncüler, Ann. Phys. (8), 12, 684–691 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Quesne, B. Bagchi, A. Banergee, and V. M. Tkachuk, Bulg. J. Phys., 33, 308–318 (2006).

    MathSciNet  MATH  Google Scholar 

  30. C. Quesne, SIGMA, 3, 067 (2007).

    MathSciNet  Google Scholar 

  31. P. K. Jha, H. Eleuch, and Y. V. Rostovtsev, J. Modern Opt., 58, 652–656 (2011); arXiv:1010.1744v1 [condmat. other] (2010).

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Yu, S.-H. Dong, and G.-H. Sun, Phys. Lett. A, 322, 290–297 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. Schulze-Halberg, Internat. J. Mod. Phys. A, 22, 1735–1769 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A. Schulze-Halberg, Internat. J. Mod. Phys. A, 23, 537–546 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. C. Quesne, Ann. Phys. (N. Y.), 321, 1221–1239 (2006); arXiv:quant-ph/0508216v3 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A. G. M. Schmidt, Phys. Lett. A, 353, 459–462 (2006).

    Article  ADS  Google Scholar 

  37. D. A. Kulikov and V. M. Shapoval, “ħ-Expansion for the SchrÖdinger equation with a position-dependent mass,” arXiv:1206.1666v1 [quant-ph] (2012).

    Google Scholar 

  38. S. A. S. Ahmed, Internat. J. Theoret. Phys., 36, 1893–1905 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. N. Saikia, Turk. J. Phys., 36, 187–196 (2012)

    Google Scholar 

  40. N. Saikia and S. A. S. Ahmed, Theor. Math. Phys., 168, 1105–1111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. S. A. S. Ahmed, B. C. Borah, and D. Sharma, Eur. Phys. J. D, 17, 5–11 (2001)

    Article  ADS  Google Scholar 

  42. S. A. S. Ahmed and L. Buragohain, Phys. Scr., 80, 025004 (2009)

    Article  ADS  Google Scholar 

  43. S. A. S. Ahmed and L. Buragohain, Eur. J. Theor. Phys., 7, 145–154 (2010)

    Google Scholar 

  44. N. Bhagawati, N. Saikia, and N. N. Singh, Acta Phys. Polon. B, 44, 1711–1723 (2013); arXiv:1309.3152v1 [math-ph] (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. N. Bhagawati, Acta Phys. Polon. B, 45, 15–28 (2014); arXiv:1402.1265v1 [math-ph] (2014)

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Bharali, Phys. Scr., 88, 035009 (2013).

    Article  ADS  Google Scholar 

  47. S. A. S. Ahmed and B. C. Borah, J. Phys. A: Math. Gen., 36, 10071–10082 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rajbongshi.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 1, pp. 117–133, July, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajbongshi, H. Exactly solvable potentials and the bound-state solution of the position-dependent mass Schrödinger equation in D-dimensional space. Theor Math Phys 184, 996–1010 (2015). https://doi.org/10.1007/s11232-015-0312-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0312-0

Keywords

Navigation