Skip to main content
Log in

Brønsted and Lewis acid catalysis with ion- exchanged clays

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An acid-treated montmorillonite clay has been ion-exchanged with Al3+, Fe3+, Cu2+, Zn2+, Ni2+, Co2+ and Na+. The catalytic activities of these materials have been measured in the Brønsted acid catalysed rearrangement of α-pinene to camphene, and the Lewis acid catalysed rearrangement of camphene hydrochloride to isobornyl chloride, following thermal activation at temperatures from 75 to 350°C. The surface acidities of the ion-exchanged clays have been measured using a microcalorimetric method involving ammonia adsorption, and through the infrared spectra of adsorbed pyridine. The results show that maximum Brønsted acidity is generated on thermal activation at approximately 150°C and maximum Lewis acidity at 250- -300°C. A good correlation has been found between the surface acidities and the catalytic activities of the ion- exchanged clays in both reactions. A significant result is the relatively low surface Lewis acid strength of Al3+- exchanged clays, for which a possible explanation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.B. Ryland, M.W. Tamele and J.N. Wilson, in: Cracking Catalysts, Catalysis, Vol. VII, ed. P.H. Emmitt (Reinhold, New York, 1960).

    Google Scholar 

  2. J.H. Purnell, Catal. Lett. 5 (1990) 203.

    Article  CAS  Google Scholar 

  3. M. Balogh and P. Laszlo, Organic Chemistry using Clays (Springer, NewYork 1993).

    Google Scholar 

  4. J.A. Ballantine, in: Solid Supports and Catalysts in Organic Synthesis, ed. K. Smith (Horwood, Chichester, 1992) p. 100.

    Google Scholar 

  5. C.N. Rhodes and D.R. Brown, J. Chem. Soc. Faraday 91 (1995) 1031.

    Article  CAS  Google Scholar 

  6. M. Frenkel, Clays Clay Miner. 22 (1974) 435.

    CAS  Google Scholar 

  7. J. Tateiwa, H. Horiuchi, K. Hashimoto, T. Yamauchi and S.Uemura, J.Org. Chem. 59 (1994) 5901.

    Article  CAS  Google Scholar 

  8. C. Cativiela, J.I. Garcia, M. Garcia-Matres, J.A. Mayoral, F. Figueras, J.M. Fraile, T. Cseri and B. Chiche, Appl. Catal. A 123 (1995) 273.

    Article  CAS  Google Scholar 

  9. T. Cseri, S. Bekassy, F. Figueras and S. Rizner, J. Mol. Catal. A 98 (1995) 101.

    Article  CAS  Google Scholar 

  10. P. Laszlo and A.Mathy,Helv.Chim.Acta 70 (1987) 577.

    Article  CAS  Google Scholar 

  11. A. Cornelis, A. Gerstmans, P. Laszlo, A. Mathy and I. Zieba, Catal. Lett. 6 (1990) 103.

    Article  CAS  Google Scholar 

  12. J.M. Adams, S. Dyer, K. Martin, W.A. Matear and R.W. McCabe, J.Chem. Soc. Perkin I (1994) 761.

  13. A. Cornelis and P. Laszlo, Synlett. (1994) 155.

  14. P. Laszlo and H.Moison, Chem. Lett. (1989) 1031.

  15. J.H. Purnell and Lu Yun,Catal. Lett. 18 (1993) 235.

    Article  CAS  Google Scholar 

  16. C.N. Rhodes and D.R. Brown, Clay Miner. 29 (1994) 799.

    CAS  Google Scholar 

  17. C.N. Rhodes and D.R. Brown, Catal. Lett. 24 (1994) 285.

    Article  CAS  Google Scholar 

  18. D.R. Brown and C.N. Rhodes, Thermochim. Acta (1997), in press.

  19. S.A. Bagshawand R.P. Cooney, Chem.Mater. 5 (1993) 1101.

    Article  Google Scholar 

  20. E.P. Parry, J.Catal. 2 (1963) 371.

    Article  CAS  Google Scholar 

  21. M. Lefrancois and G.Malbois, J.Catal. 20 (1971) 350.

    Article  CAS  Google Scholar 

  22. C. Breen, ClayMiner. 26 (1991) 487.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D., Rhodes, C. Brønsted and Lewis acid catalysis with ion- exchanged clays. Catalysis Letters 45, 35–40 (1997). https://doi.org/10.1023/A:1019038806333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019038806333

Keywords

Navigation