Skip to main content
Log in

The Oxidation of a Directionally Solidified Ni-Al-Cr3C2 Alloy at 1100 and 1200°C in Oxygen

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of a directionallysolidified Ni-Al-Cr3C2 alloy ofover all composition Ni-12.3Cr-6.9Al-1.8C (wt.%) hasbeen investigated at 1100 and 1200°C under 1 atmoxygen. Experiments have also been carried out on specimens having the samecomposition but with a nonaligned structure. At1100°C, in both cases and unlike conventionalnickel-base superalloys with the same chromium andaluminum contents, aluminium was found to oxidize internallybeneath an external Cr2O3 scale.Although the volume fraction of the internalprecipitates was significant, they showed no tendency tocoalesce into a compact subsurface layer, but formed randomly distributed clustersin the alloy matrix. The kinetics of oxidation andmorphologies of the oxide scales were not substantiallyaffected either by thermal cycling or by the alloy microstructure. At the higher temperature,continuous Al2O3 scales formedbeneath thick layers of transient nickel andnickel-chromium-rich oxides; no internal precipitationof aluminum-rich oxides was observed. However, internal degradation of thedirectionally solidified specimens at 1200°C wasquite significant, due to in situ oxidation of primarycarbides. The multilayered scales formed at 1200°C spalled extensively on cooling as a consequenceof loss of contact, starting preferentially at theintersections of the Cr2C3 fiberswith the alloy-scale interface. The observed behaviorcan be attributed to a reduction in the availability of chromiumbecause of the multiphase structure of the alloy; this,in turn, resulted in an increase in the flux of oxygeninward, leading to internal oxidation of aluminum at 1100°C. The almost exclusive externaloxidation of aluminum becomes possible at 1200°C,probably because of an increase in the diffusivity ofaluminum in the alloy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Gesmundo and B. Gleeson, Oxid. Met. 44, 211 (1995).

    Google Scholar 

  2. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 42, 409 (1994).

    Google Scholar 

  3. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 43, 379 (1993).

    Google Scholar 

  4. J. F. Oliveira, Y. Niu, F. C. Rizzo, and F. Gesmundo, Oxid. Met. 44, 399 (1995).

    Google Scholar 

  5. B. Gleeson, W. H. Cheung, and D. J. Young, Corros. Sci. 35, 923 (1993).

    Google Scholar 

  6. J. L. Gonzaléz-Carrasco, P. Adeva, and M. Aballe, Oxid. Met. 33, 1 (1990).

    Google Scholar 

  7. R. N. Durham, B. Gleeson, and D. J. Young, Proc. 13th Intern. Corros. Cong., Melbourne, Australia, paper 293, 1996.

  8. G. Wang, B. Gleeson, and D. L. Douglass, Oxid. Met. 35, 333 (1991).

    Google Scholar 

  9. J. Stringer, D. M. Johnson, and D. P. Whittle, Oxid. Met. 12, 257 (1978).

    Google Scholar 

  10. E. R. Thompson, F. D. George, and E. H. Draft, United Aircraft Laboratories Reports Nos. N00019-70-C-000969 (1971).

  11. J. G. Smeggil and M. D. McConnell, Oxid. Met. 8, 309 (1974).

    Google Scholar 

  12. J. G. Smeggil, Oxid. Met. 9, 31 (1975).

    Google Scholar 

  13. J. G. Smeggil, Oxid. Met. 9, 225 (1975).

    Google Scholar 

  14. J. G. Smeggil, Oxid. Met. 9, 137 (1975).

    Google Scholar 

  15. E. J. Felten and F. S. Pettit, Paper presented at the spring meeting of the Metallurgical Society of AIME, Pittsburgh (1974).

  16. F. H. Stott, G. C. Wood, and J. G. Fountain, Oxid. Met. 14, 31 (1980).

    Google Scholar 

  17. M. McLean and G. C. Wood, British Patent 25947/77, London, 1977.

  18. F. H. Stott, G. C. Wood, and J. G. Fountain, Oxid. Met. 14, 135, (1980).

    Google Scholar 

  19. D. C. Tidy, PhD Thesis, Univ. of Cambridge, 1970.

  20. G. J. May, Met. Sci. 9, 269 (1975).

    Google Scholar 

  21. J. G. Fountain, G. C. Wood, and F. H. Stott, Werkst. Korros. 30, 536 (1979).

    Google Scholar 

  22. H. J. Grabke, in Guidelines for Methods of Testing and Research in High Temperature Corrosion, European Federation of Corrosion Publications 14 (The Institute of Materials, London, 1996), p. 52.

    Google Scholar 

  23. P. Kofstad, High Temperature Corrosion (Elsevier Allied Science Pub., Amsterdam, 1988), p. 401.

    Google Scholar 

  24. F. H. Stott, G. C. Wood, D. P. Whittle, B. D. Bastow, Y. Sheda, and A. Martinez-Villafane, Solid State Ionics 12, 365 (1984).

    Google Scholar 

  25. C. A. Barrett and C. E. Lowell, Oxid. Met. 11, 199 (1977).

    Google Scholar 

  26. D. Prajitno, B. Gleeson, and D. J. Young, Corros. Sci. 39, 639 (1997).

    Google Scholar 

  27. M. E. El Dahshan, D. P. Whittle, and J. Stringer, Oxid. Met. 9, 45 (1975).

    Google Scholar 

  28. D. P. Whittle, in High Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, TX, 1983).

    Google Scholar 

  29. H. Hindam and D. P. Whittle, Oxid. Met. 18, 245 (1982).

    Google Scholar 

  30. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science Publ. Amsterdam, 1988), p. 389.

    Google Scholar 

  31. S. W. Guan and W. W. Smeltzer, Oxid. Met. 42, 375 (1994).

    Google Scholar 

  32. C. S. Giggins and F. S. Pettit, J. Electrochem. Soc. 118, 1783 (1971).

    Google Scholar 

  33. R. Wallwork and A. Z. Hed, Oxid. Met. 3, 171 (1971).

    Google Scholar 

  34. C. Wagner, Corros. Sci. 5, 751 (1965).

    Google Scholar 

  35. F. H. Stott, G. C. Wood, and J. Stringer, Oxid. Met. 44, 113 (1995).

    Google Scholar 

  36. P. Castello, F. H. Stott, and F. Gesmundo, Corros. Sci., manuscript submitted.

  37. F. Gesmundo, P. Castello, and F. Viani, Oxid. Met. 46, 383 (1996).

    Google Scholar 

  38. C. Wagner, Corros. Sci. 8, 889 (1968).

    Google Scholar 

  39. F. Gesmundo, P. Nanni, and D. P. Whittle, J. Electrochem. Soc. 127, 1773 (1980).

    Google Scholar 

  40. M. J. Monteiro, Y. Niu, F. C. Rizzo, and F. Gesmundo, Oxid. Met. 43, 527 (1995).

    Google Scholar 

  41. M. Castro Rebello, Y. Niu, F. C. Rizzo, and F. Gesmundo, Oxid. Met. 43, 561 (1995).

    Google Scholar 

  42. R. Durham, B. Gleeson, and D. J. Young, unpublished research.

  43. B. E. Hopkinson and H. R. Copson, Proc. 16th Annu. Conf., March 14-18, (NACE, Dallas, TX, 1960), p. 100.

    Google Scholar 

  44. G. C. Wood and F. H. Stott, Brit. Corros. J. 6, 247 (1971).

    Google Scholar 

  45. F. H. Stott, B. Gleeson, and P. Castello, Mater. High Temp., manuscript submitted.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castello, P., Stott, F.H. & Gesmundo, F. The Oxidation of a Directionally Solidified Ni-Al-Cr3C2 Alloy at 1100 and 1200°C in Oxygen. Oxidation of Metals 49, 583–610 (1998). https://doi.org/10.1023/A:1018890610367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018890610367

Navigation