Skip to main content
Log in

Selective observation of the Cu(I)-amicyanin metal site by paramagnetic NMR on partially oxidised samples

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The relaxation enhancement caused by paramagnetic copper(II) is used to observe selectivelythe metal site of copper(I)-amicyanin by one- and two-dimensional NMR spectroscopy. Theparamagnetic effect is communicated to the diamagnetic protein through the electron self-exchange reaction in partially oxidised samples, and can be used for the selective detectionof protons around the metal. Relaxation-selective NMR pulse sequences, like super-WEFTand WEFT-NOESY, are used to achieve the desired selection of the signals. The spectraobtained show well-resolved signals corresponding to protons within a radius of∼7 Å from the metal, including almost all protons from the coordinated residues. A significant increasein resolution as well as selection of the most relevant part of the protein (close to the activecentre) are the principal advantages of this technique, which can be used to obtain specificinformation about the metal site in blue copper proteins, to assist in the assignment of theirNMR spectra and to determine functional properties like the electron self-exchange rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, E.N. (1988) J. Mol. Biol., 203, 1071–1095.

    Google Scholar 

  • Banci, L., Bertini, I. and Luchinat, C. (1991) Nuclear and Electron Relaxation, VCH, Weinheim, Germany.

    Google Scholar 

  • Banci, L., Bertini, I. and Luchinat, C. (1994) Methods Enzymol., 239, 485–514.

    Google Scholar 

  • Bertini, I. and Luchinat, C. (1986) NMR of Paramagnetic Molecules in Biological Systems, Benjamin/Cummings, Menlo Park, CA, U.S.A.

    Google Scholar 

  • Bertini, I., Turano, P. and Vila, A. (1993) Chem. Rev., 93, 2833–2932.

    Google Scholar 

  • Bertini, I., Luchinat, C. and Piccioli, M. (1994) Prog. NMR Spectrosc., 26, 91–139.

    Google Scholar 

  • Canters, G.W., Hill, H.A.O., Kitchen, N.A. and Adman, E.T. (1984) Eur. J. Biochem., 138, 141–152.

    Google Scholar 

  • Chapman, S.K. (1991) In Perspectives on Bioinorganic Chemistry, Vol. 1 (Eds., Hay, R.W., Dilworth, J.R. and Nolan, K.B.), Jai Press, London, U.K., pp. 95–140.

    Google Scholar 

  • Chen, L., Durley, R., Poliks, B., Hamada, K., Chen, Z., Methews, S., Davidson, U.L., Satow, Y., Huizinga, E., Vellieux, M.D. and Hol, W. G.J. (1992) Biochemistry, 31, 4959–4964.

    Google Scholar 

  • Chen, Z., de Ropp, J.S., Hernández, G. and La Mar, G.N. (1994) J. Am. Chem. Soc., 116, 8772–8783.

    Google Scholar 

  • Groeneveld, C.M. and Canters, G.W. (1985) Eur. J. Biochem., 153, 559–564.

    Google Scholar 

  • Groeneveld, C.M. and Canters, G.W. (1988) J. Biol. Chem., 263, 167–173.

    Google Scholar 

  • Inubushi, T. and Becker, E.D. (1983) J. Magn. Reson., 51, 128–133.

    Google Scholar 

  • Kalverda, A.P., Wijmenga, S.S., Lommen, A., Van de Ven, F.J., Hilbers, M. and Canters, G.W. (1994) J. Mol. Biol., 240, 358–371.

    Google Scholar 

  • Kalverda, A.P., Salgado, J., Dennison, C. and Canters, G.W. (1996) Biochemistry, 35, 3085–3092.

    Google Scholar 

  • Kraulis, P.J. (1991) J. Appl. Crystallogr., 24, 946–950.

    Google Scholar 

  • Kroes, S.J., Salgado, J., Parigi, G., Luchinat, C. and Canters, G.W. (1996) J. Biol. Inorg. Chem., 4, 551–559.

    Google Scholar 

  • La Mar, G.N. and de Ropp, J.S. (1993) In NMR of Paramagnetic Molecules, Vol. 12 (Eds., Berliner, L.J. and Reuben, J.), Plenum, New York, NY, U.S.A., pp. 1–78.

    Google Scholar 

  • La Mar, G.N. (Ed.) (1995) Nuclear Magnetic Resonance of Paramagnetic Molecules, Series C: Mathematical and Physical Sciences, Vol. 457, Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Leigh, J.S. (1971) J. Magn. Reson., 4, 308–311.

    Google Scholar 

  • Lommen, A. and Canters, G.W. (1990) J. Biol. Chem., 265, 2768–2774.

    Google Scholar 

  • Lommen, A., Wijmenga, S.S., Hilbers, C.W. and Canters, G.W. (1991) Eur. J. Biochem., 201, 695–702.

    Google Scholar 

  • Marcus, R.A. (1963) J. Phys. Chem., 67, 853–857.

    Google Scholar 

  • McLaughlin, A.C. and Leigh, J.S. (1973) J. Magn. Reson., 9, 296–304.

    Google Scholar 

  • Piccioli, M., Luchinat, C., Mizoguchi, T.J., Ramírez, B.E., Gray, H.B. and Richards, J.H. (1995) Inorg. Chem., 34, 737–742.

    Google Scholar 

  • Romero, A., Nar, H., Huber, R., Messerschmidt, A., Kalverda, A.P., Canters, G.W., Durley, R. and Mathews, F.S. (1994) J. Mol. Biol., 236, 1196–1211.

    Google Scholar 

  • Salgado, J., Jiménez, H.J., Moratal, J., Kroes, S., Warmerdam, G. and Canters, G.W. (1996) Biochemistry, 35, 1810–1819.

    Google Scholar 

  • Sandström, J. (1982) Dynamic NMR Spectroscopy, Academic Press, New York, NY, U.S.A.

    Google Scholar 

  • Solomon, I. (1955) Phys. Rev., 99, 559–565.

    Google Scholar 

  • Vila, A.J. (1994) FEBS Lett., 355, 15–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado, J., Kalverda, A.P. & Canters, G.W. Selective observation of the Cu(I)-amicyanin metal site by paramagnetic NMR on partially oxidised samples. J Biomol NMR 9, 299–305 (1997). https://doi.org/10.1023/A:1018683026421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018683026421

Navigation