Skip to main content
Log in

Characterization of close-celled cellular aluminum alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The deformation behaviour of two different types of aluminium alloy foam are studied under tension, compression, shear and hydrostatic pressure. Foams having closed cells are processed via batch casting, whereas foams with semi-open cells are processed by negative pressure infiltration. The influence of relative foam density, cell structure and cell orientation on the stiffness and strength of foams is studied; the deformation mechanisms are analysed by using video imaging and SEM (scanning electronic microscope). The measured dependence of stiffness and strength upon relative foam density are compared with analytical predictions. The measured stress versus strain curves along different loading paths are compared with predictions from a phenomenological constitutive model. It is found that the deformations of both types of foams are dominated by cell wall bending, attributed to various process induced imperfections in the cellualr structure. The closed cell foam is found to be isotropic, whereas the semi-open cell foam shows strong anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Gibson and M. F. Ashby, “Cellular Solids: Structure and Properties, ” 2nd ed. (Cambridge University Press, Cambridge, UK, 1997).

    Google Scholar 

  2. M. F. Ashby, A. G. Evans, J. W. Hutchinson and N. A. Fleck, “Metal Foams: A Design Guide” (Cambridge University, Engineering Department, Cambridge, UK, 1999).

    Google Scholar 

  3. A. G. Evans, J. W. Hutchinson and M. F. Ashby, “Current Opinion: Metals and Alloys” (1998) p. 288.

  4. T. J. Lu, H. A. Stone and M. F. Ashby, Acta Mater. 46 (1998) 3619.

    Google Scholar 

  5. T. J. Lu and C. Chen, ibid. 47 (1999) 1469.

    Google Scholar 

  6. T. J. Lu, A. Hess and M. F. Ashby, J. Appl. Phys. 85(11) (1999) 7528.

    Google Scholar 

  7. X. Wang and T. J. Lu, J. Acous. Soc. Am. 106(2) (1999) 756.

    Google Scholar 

  8. H. P. Degischer, Materials and Design 18(4/6) (1997) 221.

    Google Scholar 

  9. C. Chen and T. J. Lu, Int. J. Solids Struc. 37 (2000) 7769.

    Google Scholar 

  10. C. Chen, T. J. Lu and N. A. Fleck, J. Mech. Phys. Solids 47 (1999) 2235.

    Google Scholar 

  11. V. S. Deshpande and N. A. Fleck, J. Mech. Phys. Solids, in press.

  12. L. J. Gibson, M. F. Ashby, J. Zhang and T. C. Triantafillou, Int. J. Mech. Sci. 31 (1989) 635.

    Google Scholar 

  13. M. A. Puso and S. Govindjee, ASME MD 68 (1995) 159.

    Google Scholar 

  14. J. Zhang, Z. Lin, A. Wong, N. Kikuchi, V. C. Li, A. F. Yee and G. S. Nusholtz, J. Engng. Mater. Tech. 119 (1997) 284.

    Google Scholar 

  15. Y. Sugimura, J. Meyer, M. Y. He, H. Bart-Smith, J. Grenestedt and A. G. Evans, Acta Mater. 45 (1997) 5245.

    Google Scholar 

  16. K. Y. G. McCullough, N. A. Fleck and M. F. Ashby, Acta Mater. 47 (1999) 2323.

    Google Scholar 

  17. H. L. Schreyer and Z. Chen, ASME J. Appl. Mech. 53 (1986) 791.

    Google Scholar 

  18. R. H. J. Peerlings, R. De Borst, W. A. M. Brekelmans, J. H. P. De Vree and I. Spee, Eur. J. Mech. A/Solids 15 (1996) 937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, T.J., Ong, J.M. Characterization of close-celled cellular aluminum alloys. Journal of Materials Science 36, 2773–2786 (2001). https://doi.org/10.1023/A:1017977216346

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017977216346

Keywords

Navigation