Skip to main content
Log in

The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research, the mechanical behavior of closed-cell aluminum (Al)-alloy foams was investigated at different temperatures in the range of 25-450 °C. The main mechanical properties of porous Al-alloy foams are affected by the testing temperature, and they decrease with the increase in the temperature during uniaxial compression. From both the constant/serrated character of stress–strain curves and macro/microstructural morphology of deformed cellular structure, it was found that Al foams present a transition temperature from brittle to ductile behavior around 192 °C. Due to the softening of the cellular structure at higher temperatures, linear correlations of the stress amplitude and that of the absorbed energy with the temperature were proposed. Also, it was observed that the presence of inherent defects like micropores in the foam cell walls induced further local stress concentration which weakens the cellular structure’s strength and crack propagation and cell-wall plastic deformation are the dominant collapse mechanisms. Finally, an energy absorption study was performed and an optimum temperature was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, 1997

    Book  Google Scholar 

  2. E. Linul, L. Marsavina, and J. Kováčik, Collapse Mechanisms of Metal Foam Matrix Composites Under Static And Dynamic Loading Conditions, Mat. Sci. Eng. A, 2017, 690, p 214–224

    Article  Google Scholar 

  3. X.Z. Yue, H. Fukazawa, and K. Kitazono, Strain Rate Sensitivity Of Open-Cell Titanium Foam at Elevated Temperature, Mat. Sci. Eng. A, 2016, 673, p 83–89

    Article  Google Scholar 

  4. M.C. Saha, MdE Kabir, and S. Jeelani, Enhancement in Thermal and Mechanical Properties of Polyurethane Foam Infused with Nanoparticles, Mater. Sci. Eng. A, 2008, 479(1–2), p 213–222

    Article  Google Scholar 

  5. R. Negru, L. Marsavina, T. Voiconi, E. Linul, H. Filipescu, and G. Belciu, Application of TCD for Brittle Fracture of Notched PUR Materials, Theor. Appl. Fract. Mech., 2015, 80, p 87–95

    Article  Google Scholar 

  6. L. Marsavina, F. Berto, R. Negru, D.A. Serban, and E. Linul, An Engineering Approach to Predict Mixed Mode Fracture of PUR Foams Based on ASED and Micromechanical Modelling, Theor. Appl. Fract. Mech., 2017, 91, p 148–154

    Article  Google Scholar 

  7. L. Marsavina, E. Linul, T. Voiconi, D.M. Constantinescu, and D.A. Apostol, On the Crack Path Under Mixed Mode Loading on PUR Foams, Frattura ed Integrita Strutturale, 2015, 34, p 444–453

    Google Scholar 

  8. E. Linul, D.A. Serban, T. Voiconi, L. Marsavina, and T. Sadowski, Energy-Absorption and Efficiency Diagrams of Rigid PUR Foams, Key Eng. Mater., 2014, 601, p 246–249

    Article  Google Scholar 

  9. B. Koohbor and A. Kidane, Design Optimization of Continuously and Discretely Graded Foam Materials for Efficient Energy Absorption, Mater. Des., 2016, 102, p 151–161

    Article  Google Scholar 

  10. S. Mohsenizadeh, R. Alipour, M. Shokri Rad, A. Farokhi Nejad, and Z. Ahmad, Crashworthiness Assessment of Auxetic Foam-Filled Tube Under Quasi-Static Axial, Mater. Des., 2015, 88, p 258–268

    Article  Google Scholar 

  11. L. Marsavina, D.M. Constantinescu, E. Linul, T. Voiconi, and D.A. Apostol, Shear and Mode II, Fracture of PUR Foams, Eng. Fail. Anal., 2015, 58, p 465–476

    Article  Google Scholar 

  12. L. Marsavina, D.M. Constantinescu, E. Linul, F.A. Stuparu, and D.A. Apostol, Experimental and Numerical Crack Paths in PUR Foams, Eng. Fract. Mech., 2016, 167, p 68–83

    Article  Google Scholar 

  13. E. Linul and L. Marsavina, Assesment of Sandwich Beams with Rigid Polyurethane Foam Core Using Failure-Mode Maps, P. Rom. Acad. A, 2015, 16(4), p 522–530

    Google Scholar 

  14. T. Voiconi, E. Linul, L. Marsavina, T. Sadowski, and M. Knec, Determination of Flexural Properties of Rigid PUR Foams Using Digital Image Correlation, Solid State Phenom., 2014, 216, p 116–121

    Article  Google Scholar 

  15. Y. Hangai, T. Morita, S. Koyama, O. Kuwazuru, and N. Yoshikawa, Functionally Graded Aluminum Foam Fabricated by Friction Powder Sintering Process with Traversing Tool, J. Mater. Eng. Perform., 2016. https://doi.org/10.1007/s11665-016-2218-x

    Google Scholar 

  16. Y. Wu, L. Tang, Z. Liu, and X. Zhang, Numerical Study of the Shape Irregularity Gradient in Metallic Foams Under Different Impact Velocities, J. Mater. Eng. Perform., 2017. https://doi.org/10.1007/s11665-017-2777-5

    Google Scholar 

  17. M. Taherishargh, M. Vesenjak, I.V. Belova, T. Fiedler et al., In Situ Manufacturing and Mechanical Properties of Syntactic Foam Filled Tubes, Mater. Des., 2016, 99, p 356–368

    Article  Google Scholar 

  18. J. Lázaro, E. Solórzano, M.A. Rodríguez-Pérez, and A.R. Kennedy, Effect of Solidification Rate on Pore Connectivity of Aluminium Foams And Its Consequences on Mechanical, Mat. Sci. Eng. A, 2016, 672, p 236–246

    Article  Google Scholar 

  19. Z. Liu, Z. Huang, and Q. Qin, Experimental and Theoretical Investigations on Lateral Crushing of Aluminum Foam-Filled Circular Tubes, Compos. Struct., 2017, 175, p 19–27

    Article  Google Scholar 

  20. E.M. Castrodeza, C. Mapelli, M. Vedani et al., Processing of Shape Memory CuZnAl Open-Cell Foam by Molten Metal Infiltration, J. Mater. Eng. Perform., 2009, 18(5–6), p 484–489

    Article  Google Scholar 

  21. I. Mutlu, S. Yeniyol, and E. Oktay, Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications, J. Mater. Eng. Perform., 2016, 25(4), p 1586–1593

    Article  Google Scholar 

  22. Y. An, S. Yang, E. Zhao, and Z. Wang, Characterization of Metal Grid-Structure Reinforced Aluminum Foam Under Quasi-Static Bending Loads, Compos. Struct., 2017, 178, p 288–296

    Article  Google Scholar 

  23. J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater. Sci., 2001, 46, p 559–632

    Article  Google Scholar 

  24. Mu Yongliang and Guangchun Yao, Effect of Fly Ash Particles on the Compressive Properties of Closed-Cell Aluminum Foams, J. Mater. Eng. Perform., 2010, 19, p 995–997

    Article  Google Scholar 

  25. N. Movahedi, S.M.H. Mirbagheri, and S.R. Hoseini, Effect of Foaming Temperature on the Mechanical Properties of Produced Closed-Cell A356 Aluminum Foams with Melting Method, Met. Mater. Int., 2014, 20, p 757–763

    Article  Google Scholar 

  26. S. Fischer, Energy Absorption Efficiency of Open-Cell Pure Aluminum Foams, Mater. Lett., 2016, 184, p 208–210

    Article  Google Scholar 

  27. N. Movahedi and A. Habibolahzadeh, Effect of Plasma Electrolytic Oxidation Treatment on Corrosion Behavior of Closed-Cell Al-A356 Alloy Foam, Mater. Lett., 2016, 164, p 558–561

    Article  Google Scholar 

  28. B. Katona, G. Szebényi, and I.N. Orbulov, Fatigue Properties of Ceramic Hollow Sphere Filled Aluminium Matrix Syntactic Foams, Mat. Sci. Eng. A, 2017, 679, p 350–357

    Article  Google Scholar 

  29. C. Kádár, K. Máthis, I.N. Orbulov, and F. Chmelík, Monitoring the Failure Mechanisms in Metal Matrix Syntactic Foams During Compression by Acoustic Emission, Mater. Lett., 2016, 173, p 31–34

    Article  Google Scholar 

  30. M. Taherishargh, I.V. Belova, G.E. Murch, and T. Fiedler, Pumice/Aluminium Syntactic Foam, Mater. Sci. Eng. A, 2015, 635, p 102–108

    Article  Google Scholar 

  31. D. Luong, V. Shunmugasamy, N. Gupta, D. Lehmhus et al., Quasi-Static and High Strain Rates Compressive Response of Iron and Invar Matrix Syntactic Foams, Mater. Des., 2015, 66, p 516–531

    Article  Google Scholar 

  32. A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, and I.N. Orbulov, Compressive Behaviour of Aluminium Matrix Syntactic Foams Reinforced by Iron Hollow Spheres, Mater. Des., 2015, 83, p 230–237

    Article  Google Scholar 

  33. Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, and A. Rabiei, High Strain Rate Behavior of Composite Metal Foams, Mat. Sci. Eng. A, 2015, 631, p 248–257

    Article  Google Scholar 

  34. J. Kovácik, J. Jerz, N. Mináriková, L. Marsavina, and E. Linul, Scaling of Compression Strength in Disordered Solids: Metallic Foams, Fratturaed Integrità Strutturale, 2016, 36, p 55–62

    Google Scholar 

  35. M.A. Islam, M.A. Kader, P.J. Hazell, A.D. Brown, M. Saadatfar, M.Z. Quadir, and J.P. Escobedo, Investigation of Microstructural and Mechanical Properties of Cell Walls of Closed-Cell Aluminium Alloy Foams, Mat. Sci. Eng. A, 2016, 666, p 245–256

    Article  Google Scholar 

  36. Z. Zhang, J. Ding, X. Xia, X. Sun, K. Song, W. Zhaoa, and B. Liao, Fabrication and Characterization of Closed-Cell Aluminum Foams with Different Contents of Multi-walled Carbon Nanotubes, Mater. Des., 2015, 88, p 359–365

    Article  Google Scholar 

  37. M.A. Kader, M.A. Islam, M. Saadatfar et al., Macro and Micro Collapse Mechanisms of Closed-Cell Aluminium Foams During Quasi-Static Compression, Mater. Des., 2017, 118, p 11–21

    Article  Google Scholar 

  38. F. Campana, E. Mancini, D. Pilone, and M. Sasso, Strain Rate and Density-Dependent Strength of AlSi7 Alloy Foams, Mat. Sci. Eng. A, 2016, 651, p 657–667

    Article  Google Scholar 

  39. Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, and A. Rabiei, High Strain Rate Behavior of Composite Metal Foams, Mat. Sci. Eng. A, 2015, 631, p 248–257

    Article  Google Scholar 

  40. M.Y. Omar, C. Xiang, N. Gupta et al., Syntactic Foam Core Metal Matrix Sandwich Composite: Compressive Properties and Strain Rate Effects, Mat. Sci. Eng. A, 2015, 643, p 156–168

    Article  Google Scholar 

  41. Y. Sun, Q.M. Li et al., Investigation of Strain-Rate Effect on the Compressive Behaviour of Closed-Cell Aluminium Foam by 3D Image-Based Modelling, Mater. Des., 2016, 89, p 215–224

    Article  Google Scholar 

  42. P. Wang, S. Xu, Z. Li, J. Yang, C. Zhang, H. Zheng, and S. Hu, Experimental Investigation on the Strain-Rate Effect and Inertia Effect of Closed-Cell Aluminum Foam Subjected to Dynamic Loading, Mat. Sci. Eng. A, 2015, 620, p 253–261

    Article  Google Scholar 

  43. P. Li, N.V. Nguyen, and H. Hao, Dynamic Compressive Behaviour of Mg Foams Manufactured by the Direct Foaming Process, Mater. Des., 2016, 89, p 636–641

    Article  Google Scholar 

  44. T. Jin, Z. Zhou et al., Experimental Study on the Effects of Specimen in-Plane Size on the Mechanical Behavior of Aluminum Hexagonal Honeycombs, Mat. Sci. Eng. A, 2015, 635, p 23–35

    Article  Google Scholar 

  45. L. Marsavina, J. Kovacik, and E. Linul, Experimental Validation of Micromechanical Models for Brittle Aluminium Alloy Foam, Theor. Appl. Fract. Mech., 2016, 83, p 11–18

    Article  Google Scholar 

  46. G. Zu and G. Yao, Influence of Cell Shape Anisotropy on the Compressive Property of Closed-Cell Al-Si Alloy Foam, J. Mater. Eng. Perform., 2012, 21(6), p 985–987

    Google Scholar 

  47. T. Fiedler, M. Taherishargh, L. Krstulović-Opara, and M. Vesenjak, Dynamic Compressive Loading of Expanded Perlite/Aluminum Syntactic Foam, Mat. Sci. Eng. A, 2015, 626, p 296–304

    Article  Google Scholar 

  48. E. Linul, D.A. Şerban, L. Marsavina, and J. Kovacik, Low-Cycle Fatigue Behaviour of Ductile Closed-Cell Aluminium Alloy Foams, Fatig. Fract. Eng. Mater. Struct., 2017, 40(4), p 597–604

    Article  Google Scholar 

  49. L. Wang, N. Limodin, A.E. Bartali, J.F. Witz, R. Seghir, J.Y. Buffiere, and E. Charkaluk, Influence of Pores on Crack Initiation in Monotonic Tensile and Cyclic Loadings in Lost Foam Casting A319 Alloy by Using 3D In Situ Analysis, Mat. Sci. Eng. A, 2016, 673, p 362–372

    Article  Google Scholar 

  50. M. Taherishargh, B. Katona, T. Fiedler, and I.N. Orbulov, Fatigue Properties of Expanded Perlite/Aluminum Syntactic Foams, J. Compos. Mater., 2016, 51(6), p 773–781

    Article  Google Scholar 

  51. J. Liu, Q. Qu, Y. Liu, R. Li, and B. Liu, Compressive Properties of Al-Si-SiC Composite Foams at Elevated Temperatures, J. Alloys. Compd., 2016, 676, p 239–244

    Article  Google Scholar 

  52. M.S. Aly, Behavior of Closed Cell Aluminium Foams Upon Compressive Testing at Elevated Temperatures: Experimental Results, Mater. Lett., 2007, 61(14–15), p 3138–3141

    Article  Google Scholar 

  53. B. Mansoor, H. Nassar, and V.C. Shunmugasamy, Three Dimensional Forming of Compressed Open-Cell Metallic Foams at Elevated Temperatures, Mat. Sci. Eng. A, 2015, 628, p 433–441

    Article  Google Scholar 

  54. J. Kováčik, Ľ. Orovčík, and J. Jerz, High-Temperature Compression of Closed Cell Aluminium Foams, Kovove Mater., 2016, 54, p 429–441

    Google Scholar 

  55. E. Linul, N. Movahedi, and L. Marsavina, The Temperature Effect on the Axial Quasi-Static Compressive Behavior of Ex Situ Aluminum Foam-Filled Tubes, Compos. Struct., 2017, 180, p 709–722

    Article  Google Scholar 

  56. N. Movahedi and E. Linul, Quasi-Static Compressive Behavior of the Ex Situ Aluminum-Alloy Foam-Filled Tubes Under Elevated Temperature Conditions, Mater. Lett., 2017, 206, p 182–184

    Article  Google Scholar 

  57. ISO 13314, Mechanical Testing of Metals—Ductility testing— Compression Test for Porous and Cellular Metals 2011.

  58. L.J. Gibson, Mechanical Behavior of Metallic Foams, An. Rev. Mater. Sci., 2000, 30, p 191–227

    Article  Google Scholar 

  59. A. Şerban, E. Linul, T. Voiconi, L. Marsavina, and N. Modler, Numerical Evaluation of Two-Dimensional Micromechanical Structures of Anisotropic Cellular Materials: Case Study for Polyurethane Rigid Foams, Iran. Polym. J., 2015, 24, p 515–529

    Article  Google Scholar 

  60. I. Duarte, M. Vesenjak, and L. Krstulović-Opara, Compressive Behaviour of Unconstrained and Constrained Integral-Skin Closed-Cell Aluminium Foam, Compos. Struct., 2016, 154, p 231–238

    Article  Google Scholar 

  61. N. Movahedi and S.M.H. Mirbagheri, Comparison of the Energy Absorption of Closed-Cell Aluminum Foam Produced by Various Foaming Agents, Strength Mat., 2016, 48(3), p 444–449

    Article  Google Scholar 

  62. K. Shojaei, S.V. Sajadifar, and G.G. Yapici, On the Mechanical Behavior of Cold Deformed Aluminum 7075 Alloy at Elevatesd Temperatures, Mater. Sci. Eng. A, 2016, 670, p 81–89

    Article  Google Scholar 

  63. S. Sahu, M.D. Goel, D.P. Mondal, and S. Das, High Temperature Compressive Deformation Behavior of ZA27–SiC Foam, Mater. Sci. Eng. A, 2014, 607, p 162–172

    Article  Google Scholar 

  64. I. Duarte, M. Vesenjak, L. Krstulovic-Opara, and Z. Ren, Static and Dynamic Axial Crush Performance of In Situ Foam-Filled Tubes, Compos. Struct., 2015, 124, p 128–139

    Article  Google Scholar 

  65. E. Linul, D.A. Şerban, L. Marsavina, and T. Sadowski, Assessment of Collapse Diagrams of Rigid Polyurethane Foams Under Dynamic Loading Conditions, Arch. Civ. Mech. Eng., 2017, 17(3), p 457–466

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to acknowledge of Mr. Cosmin Codrean from Politehnica University of Timisoara for his assistance in performing of microscopic images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nima Movahedi or Emanoil Linul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movahedi, N., Linul, E. & Marsavina, L. The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams. J. of Materi Eng and Perform 27, 99–108 (2018). https://doi.org/10.1007/s11665-017-3098-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3098-4

Keywords

Navigation