Skip to main content
Log in

Influence of SiC and Al2O3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This investigation is mainly aimed to study the influence of SiC and Al2O3 particles on the mechanical properties and damage evolution behaviors of an aluminum alloy Al-2618. Heat treatments for the composites are also studied to optimize their mechanical properties. The results of tensile tests show that SiC particulate reinforcement has advantages over Al2O3 reinforcement in both strength and ductility for the composites. T4 treatment is suggested for the composites rather than conventional peak-aging treatment (T6). T4 heat treatment with an additional of 0.6% pre-strain can result in same UTS and a 0.2% proof stress for the composites as high as T6 treatment but the final elongation under T4 treatment is larger than that under T6 treatment by more than 100%. Based on observation of damage evolution behaviors of the reinforcing particles, a theory that strength of the composites is mainly decided by the balance between reinforcing particles sharing load and making strain discontinuity in the matrix is proposed to interpret the test results. Their tolerance for large local strain at the interface, their high K1c and their low thermal expansion make SiC particles sharing much load and the better reinforcement over Al2O3 particles in respect to both strength and ductility of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Lloyd, Int. Mater. Rev. 39 (1994) 1.

    Google Scholar 

  2. M. Gupta, F. Mphamed, E. Lavernia and T. S. Srivatsan, J. Mater. Sci. 28 (1993) 2245.

    Google Scholar 

  3. T. J. A. Doel and P. Bowen, Comp. Part. 27A (1996) 655.

    Google Scholar 

  4. M. Manoharan and M. Gupta, J. Comp. Mater. 31 (1997) 1431.

    Google Scholar 

  5. D. L. McDanels, Metall. Trans. 16A (1985) 1105.

    Google Scholar 

  6. J. Yang, C. Cady, M. S. Hu, F. Zok, R. Mehrabian and A. G. Evans, Acta Metall. 38 (1990) 2613.

    Google Scholar 

  7. C.-W. Nan and D. R. Clarke, Acta Mater. 44 (1996) 3801.

    Google Scholar 

  8. C.-W. Nan, R. Birringer and H. Gleiter, Scripta Mater. 37 (1997) 969.

    Google Scholar 

  9. J. Ll Orca, Acta Metall. 43 (1995) 181.

    Google Scholar 

  10. P. B. Prangnell, S. J. Barnes, S. M. Robers and P. J. Withers, Mater. Sci. Eng. 220A (1996) 41.

    Google Scholar 

  11. J. C. Lee and K. N. Subramanian, J. Mater. Sci. 29 (1994) 1983.

    Google Scholar 

  12. Y. Flom and R. J. Arsenault, Mater. Sci. Eng. 77 (1986) 191.

    Google Scholar 

  13. J. S. Zhang, X. J. Liu, H. Cui, X. J. Duan, Z. Q. Sun and G. L. Chen, Metall. Trans. 28A(5) (1997) 1261.

    Google Scholar 

  14. J. H. Shyong and B. Derby, Mater. Sci. Eng. 197A (1995) 11.

    Google Scholar 

  15. R. Kapoor and K. S. Vecchio, ibid. 202A (1995) 63

    Google Scholar 

  16. T. Mochida, M. Taya and D. J. Ll oyd, JIM. 32 (1991) 931.

    Google Scholar 

  17. J. Ll orca, A. Martin, J. Ruiz and M. Elices, Metall Trans. 24A (1993) 1575.

    Google Scholar 

  18. B. Y. Zong and B. Derby, J. Mater. Sci. 31 (1996) 297.

    Google Scholar 

  19. Idem., Acta Mater. 45 (1997) 41.

    Google Scholar 

  20. M. Finot, Y.-L. Shen, A. Needleman and S. Suresh, Metall. Trans. 25A (1994) 2403.

    Google Scholar 

  21. Y. Zong and B. Derby, J. Dé Physique IV 3 (1993) 1861.

    Google Scholar 

  22. S. Ghosh and S. Moorthy, Acta Mater. 46 (1998) 965.

    Google Scholar 

  23. D. L. Zhang, P. Mummery and B. Cantor, in “Review of MMCs,” communicated papers of Oxford Center for Advanced Materials and Composites, 1992.

  24. F. J. Humphreys, A. Basu and M. R. Djazeb, in Proceedings of the 12th Risφ International Synposium on Material Science, edited by N. Hansen et al. (Roskilde, Denmark, 1991) p. 51.

    Google Scholar 

  25. F. J. Humphreys, in “Mechnical and Physical Behaviour of Metallic and Ceramic Composites,” edited by S. I. Anderson et al. (Risφ National Laboratory, Denmark, 1988) p. 25.

    Google Scholar 

  26. D. J. Ll ord, P. L. Morris and E. Nehme, Fabrication of Particulate Reinforced Metal Composite, edited by J. Masounave and F. G. Hamel (ASM International, Ohio, 1990).

    Google Scholar 

  27. S. W. Miller and F. J. Humphreys, in “Fundamental Relations between Microstructures and Mechanical Properties in Metal Matrix Composites,” edited by M. N. Gungor and P. Liaw (TMS, Warrendale, PA, 1989) p. 517.

    Google Scholar 

  28. P. Mummery and B. Derby, Mater. Sci. Eng. 135A (1991) 221.

    Google Scholar 

  29. J. P. Hirch, Scripta Metall. Mater. 25 (1991) 1.

    Google Scholar 

  30. R. J. Arsenault and R. M. Fisher, Scripta Metal. Mater. 17 (1983) 67.

    Google Scholar 

  31. V. J. Tennery, “Ceramic Materials and Components for Engineers” (the American Ceramic Society, 1989) p. 1840.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Y. Zong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, M., Xin, Q., Li, Z. et al. Influence of SiC and Al2O3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites. Journal of Materials Science 36, 2045–2053 (2001). https://doi.org/10.1023/A:1017591117670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017591117670

Keywords

Navigation