Skip to main content
Log in

Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genetic capacity for green plant regeneration in anther culture were mapped in a population comprising 50 doubled haploid lines from a cross between two wheat varieties ‘Ciano’ and ‘Walter’ with widely different capacity for green plant regeneration. Bulked segregant analysis with AFLP markers and composite interval mapping detected four QTLs for green plant percentage on chromosomes 2AL (QGpp.kvl-2A), 2BL (QGpp.kvl-2B.1 and QGpp.kvl-2B.2) and 5BL (QGpp.kvl-5B).The three QTLs detected on chromosome 2AL and 2BL all derived their alleles favouring green plant formation from the responsive parent ‘Ciano’.The remaining QTL on chromosome 5BL had the allele favouring green plants from the low responding parent ‘Walter’. In a multiple regression analysis the four QTLs could explain a total of 80% of the genotypic variation for green plant percentage. None of the chromosomal regions with QTLs for green plant percentage showed significant influence on either embryo formation or regeneration frequencies from the anther culture. The three major QTLs located on group two chromosomes were fixed in a second DH population derived from two parents ‘Ciano’ and ‘Benoist’,both with high capacity to produce green plants. A QTL explaining31.5% of the genetic variation for green plant formation were detected on chromosome 5BL in this cross as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agache, S., J. De Buyser, Y. Henry & J.W. Snape, 1988. Studies of the genetic relationship between anther culture and somatic tissue culture abilities in wheat. Plant Breeding 100: 26–33.

    Article  Google Scholar 

  • Agache, S., B. Bachelier, J. De Buyser, Y. Henry & J. Snape, 1989. Genetic analysis of anther culture response in wheat using aneuploid, chromosome substitution and translocation lines. Theor Appl Genet 77: 7–11.

    Article  Google Scholar 

  • Ahn, S., J.A. Anderson, M.E. Sorrells & S.D. Tanksley, 1993. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241: 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, S.B., I.K. Due & A. Olesen, 1987. The response of anther culture in a genetically wide material of winter wheat (Triticum aestivum L.) Plant Breeding 99: 181–186.

    Article  Google Scholar 

  • Andersen, S.B., I.K. Due & A. Olesen, 1988. Results with anther culture in some important scandinavian varieties of winter wheat. Acta Agric Scand 38: 289–292.

    Article  Google Scholar 

  • Bassam, B.J., G. Caetano-Anollés & P.M. Gresshoff, 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196: 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Beaumont, V.H., T.R. Rocheford & J.M. Widholm, 1995. Mapping the anther culture response genes in maize (Zea mays L.) Genome 38: 968–975.

    CAS  PubMed  Google Scholar 

  • Ben Amer, I.M., A.J. Worland & A. Börner, 1995. Chromosomal location of genes affecting tissue-culture response in wheat. Plant Breeding 114: 84–85.

    Article  Google Scholar 

  • Ben Amer, I.M., V. Korzun, A.J. Worland & A. Börner, 1997. Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor Appl Genet 94: 1047–1052.

    Article  CAS  Google Scholar 

  • Bryan, G.J., A.J. Collins, P. Stephenson, A. Orry, J.B. Smith & M.D. Gale, 1997. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94: 557–563.

    Article  CAS  Google Scholar 

  • Churchill, G.A. & R.W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

    PubMed  CAS  Google Scholar 

  • Cowen, N.M., C.D. Johnson, K. Armstrong, M. Miller, A. Woosley, S. Pescitelli, M. Shokut, S. Belmar & J.F. Petolino, 1992. Mapping genes conditioning in vitro androgenesis in maize using RFLP analysis. Theor Appl Genet 84: 720–724.

    Article  Google Scholar 

  • Day, A. & T.H.N. Ellis, 1984. Chloroplast DNA deletions associated with wheat plants regenerated from pollen. Possible basis for maternal inheritance of chloroplasts. Cell 39: 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Day, A. & T.H.N. Ellis, 1985. Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr Genet 9: 671–678.

    Article  CAS  Google Scholar 

  • De Buyser, J., Y. Henry, P. Lonnet, R. Hertzog & A. Hespel, 1987. 'Florin': A doubled haploid wheat variety developed by the anther culture method. Plant Breeding 98: 53–56.

    Article  Google Scholar 

  • De Buyser, J., S. Hachemi-Rachedi, M.-L. Lemee, S. Sejourne, J.-L. Marcotte & Y. Henry, 1992. Aneuploid analysis of anther culture response in wheat. Plant Breeding 109: 339–342.

    Article  Google Scholar 

  • Devos, K.M., M.D. Atkinson, C.N. Chinoy, C.J. Liu & M.D. Gale, 1992. RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83: 931–939.

    Article  CAS  Google Scholar 

  • Felsenburg, T., M. Feldman & E. Galun, 1987. Aneuploid and alloplasmic lines as tools for the study of nuclear and cytoplasmic control of culture ability and regeneration of scutellar calli from common wheat. Theor Appl Genet 74: 802–810.

    Article  Google Scholar 

  • Gale, M.D., M.D. Atkinson, C.N. Chinoy, R.L. Harcourt, J. Jia, Q.Y. Li & K.M. Devos, 1995. Genetic maps of hexaploid wheat. In: Z.S. Li & Z.Y. Xin (Eds.), Proc 8th Int. Wheat Genet Symp., pp. 29–40. China Agricultural Scientech Press, Beijing.

    Google Scholar 

  • Ghaemi, M., A. Sarrafi & R. Morris, 1995. Reciprocal substitutions analysis of embryo induction and plant regeneration from anther culture in wheat (Triticum aestivum L.) Genome 38: 158–165.

    PubMed  CAS  Google Scholar 

  • Hansen, N.J.P. & S.B. Andersen, 1998a. In vitro chromosome doubling with colchicine during microspore culture in wheat (Triticum aestivum L.). Euphytica 102: 101–108.

    Article  CAS  Google Scholar 

  • Hansen, N.J.P. & S.B. Andersen, 1998b. Efficient production of doubled haploid wheat plants by in vitro treatment of microspores with trifluralin or APM. Plant Breeding 117: 401–405.

    Article  CAS  Google Scholar 

  • Harada, T., T. Sato, D. Asaka & I. Matsukawa, 1991. Large-scale deletions of rice plastid DNA in anther culture. Theor Appl Genet 81: 157–161.

    Article  Google Scholar 

  • He, P., L. Shen, C. Lu, Y. Chen & L. Zhu, 1998. Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol Breed 4: 165–172.

    Article  CAS  Google Scholar 

  • Henry, Y. & J. De Buyser, 1985. Effect of the 1B/1R translocation on anther culture ability in wheat (Triticum aestivum L.). Plant Cell Reports 4: 307–310.

    Article  Google Scholar 

  • Henry, Y., J.-L. Marcotte & J. De Buyser, 1994. Chromosomal location of genes controlling short-term and long-term somatic embryogenesis in wheat revealed by immature embryo culture of aneuploid lines. Theor Appl Genet 89: 344–350.

    Article  Google Scholar 

  • Holme I.B., A. Olesen, N.J.P. Hansen & S.B. Andersen, 1999. Anther and isolated microspore culture response of wheat, Triticum aestivum L., lines from northwestern and eastern Europe. Plant Breeding 118: 111–117.

    Article  Google Scholar 

  • Jansen, R.C., 1994. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138: 871–881.

    PubMed  CAS  Google Scholar 

  • Kaleikau, E.K., R.G. Sears & B.S. Gill, 1989a. Monosomic analysis of tissue culture response in wheat (Triticum aestivum L.). Theor Appl Genet 78: 625–632.

    Google Scholar 

  • Kaleikau, E.K., R.G. Sears & B.S. Gill, 1989b. Control of tissue culture response in wheat (Triticum aestivum L.). Theor Appl Genet 78: 783–787.

    Google Scholar 

  • Komatsuda, T., T. Annaka & S. Oka, 1993. Genetic mapping of a quantitative trait locus (QTL) that enhances the shoot differentiation rate in Hordeum vulgare L. Theor Appl Genet 86: 713–720.

    Article  CAS  Google Scholar 

  • Komatsuda, T., F. Taguchi-Shiobara, S. Oka, F. Takaiwa, T. Annaka & H.-J. Jacobsen, 1995. Transfer and mapping of the shoot differentiation locus Shd1 in barley chromosome 2. Genome 38: 1009–1014.

    CAS  PubMed  Google Scholar 

  • Korzun, V., A. Börner, A.J. Worland, C.N. Law & M.S. Röder, 1997. Application of microsatellite markers to distinguish intervarietal chromosome substitution lines of wheat (Triticum aestivum L.) Euphytica 95: 149–155.

    Article  CAS  Google Scholar 

  • Kosambi, D.D., 1944. The estimation of map distances from recombination values. Ann Eugen 12: 172–175.

    Google Scholar 

  • Kurata, N., G. Moore, Y. Nagamura, T. Foote, M. Yano, Y. Minobe & M. Gale, 1994. Conservation of genome structure between rice and wheat. Bio/Technology 12: 276–278.

    Article  CAS  Google Scholar 

  • Lazar, M.D., G.W. Schaeffer & P.S. Baenziger, 1984. Cultivar and cultivar х environment effects on the development of callus and polyhaploid plants from anther cultures of wheat. Theor Appl Genet 67: 273–277.

    Article  Google Scholar 

  • Lazar, M.D., T.H.H. Chen, G.J. Scoles & K.K. Kartha, 1987. Immature embryo and anther culture of chromosome addition lines of rye in chinese spring wheat. Plant Sci 51: 77–81.

    Article  Google Scholar 

  • Mano, Y., H. Takahashi, K. Sato & K. Takeda, 1996. Mapping genes for callus growth and shoot regeneration in barley (Hordeum vulgare L.). Breeding Science 46: 137–142.

    CAS  Google Scholar 

  • Mejza, S.J., V. Morgant, D.E. DiBona & J.R. Wong, 1993. Plant regeneration from isolated microspores of Triticum aestivum. Plant Cell Rep 12: 149–153.

    Article  Google Scholar 

  • Michelmore, R.W., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Moieni, A., K. Lokos-Toth & A. Sarrafi, 1997. Evidence for genetic control and media effect on haploid regeneration in the anther culture of hexaploid wheat (Triticum aestivum L.). Plant Breeding 116: 502–504.

    Article  Google Scholar 

  • Murigneux, A., S. Bentolila, T. Hardy, S. Baud, C. Guitton, H. Jullien, S. Ben Tahar, G. Freyssinet & M. Beckert, 1994. Genotypic variation of quantitative trait loci controlling in vitro androgenesis in maize. Genome 37: 970–976.

    PubMed  CAS  Google Scholar 

  • Pauk, J., Z. Kertész, B. Beke, L. Bóna, M. Csösz & J. Matuz, 1995. New winter wheat variety: ‘GK Délibáb’ developed via combining conventional breeding and in vitro androgenesis. Cereal Res Commun 23: 251–256.

    Google Scholar 

  • Plaschke, J., M.W. Ganal & M.S. Röder, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91: 1001–1007.

    Article  CAS  Google Scholar 

  • Puolimatka, M., S. Laine & J. Pauk, 1996. Effect of ovary cocultivation and culture medium on embryogenesis of directly isolated microspores of wheat. Cereal Res Commun 24: 393–400.

    Google Scholar 

  • Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.-H. Tixier, P. Leroy & M.W. Ganal, 1998. A Microsatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  Google Scholar 

  • SAS Institute Inc., 1989. SAS/STAT User's Guide, Version 6, 4th edn. SAS Institute Inc, Cary.

    Google Scholar 

  • Sears, E.R., 1966. Nullisomic-tetrasomic combinations in hexaploid wheat. In: R. Riley & K.R Lewis (Eds.) Chromosome Manipulation and Plant Genetics, pp. 29–45. Oliver and Boyd, London.

    Google Scholar 

  • Sears, E.R. & L.M.S. Sears, 1979. The telocentric chromosomes of common wheat. In: S. Ramanujam (Ed.). Proc. 5th Int.Wheat Genet. Symp., pp. 389–407. The Indian Society of Genetics and Plant Breeding, Indian Agricultural Research Institute, New Delhi.

    Google Scholar 

  • Sharp, P.J., M. Kreis, P.R. Shewry & M.D. Gale, 1988. Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet 75: 286–290.

    Article  CAS  Google Scholar 

  • Stam, P. & J.W. Van Ooijen, 1995. Joinmap (tm) version 2.0: Software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen.

    Google Scholar 

  • Stephenson, P., G. Bryan, J. Kirby, A. Collins, K. Devos, C. Busso & M. Gale, 1998. Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97: 946–949.

    Article  CAS  Google Scholar 

  • Szakács, É., G. Kovács, J. Pauk & B. Barnabás, 1988. Substitution analysis of callus induction and plant regeneration from anther culture in wheat (Triticum aestivum L.) Plant Cell Rep 7: 127–129.

    Article  Google Scholar 

  • Taguchi-Shiobara, F., S.Y. Lin, K. Tanno, T. Komatsuda, M. Yano, T. Sasaki & S. Oka, 1997. Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor Appl Genet 95: 828–833.

    Article  CAS  Google Scholar 

  • Touraev, A., A. Indrianto, I. Wratschko, O. Vicente & E. Heberle-Bors, 1996. Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod 9: 209–215.

    Article  Google Scholar 

  • Tuvesson, I.K.D., S. Pedersen & S.B. Andersen, 1989. Nuclear genes affecting albinism in wheat (Triticum aestivum L.) anther culture. Theor Appl Genet 78: 879–883.

    Article  Google Scholar 

  • Tuvesson, I.K.D., S. Pedersen, A. Olesen & S.B. Andersen, 1991. An effect of the 1BL/1RS chromosome on albino frequency in wheat (Triticum aestivum L.) anther culture. J Genet & Breed 45: 345–348.

    Google Scholar 

  • Utz, H.F. & A.E. Melchinger, 1996. PLABQTL: A program for composite interval mapping of QTL. Journal of Agricultural Genomics 2: http://www.ncgr.org/research/jag/papers96/paper196/indexp196.html

  • Van Deynze, A.E., J.C. Nelson, E.S. Yglesias, S.E. Harrington, D.P. Braga, S.R. McCouch & M.E. Sorrels, 1995. Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248: 744–754.

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen, J.W. & C. Maliepaard, 1996. MapQTL (tm) version 3.0: Software for the calculation of QTL positions on genetic maps. CPRO-DLO, Wageningen.

    Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.

    PubMed  CAS  Google Scholar 

  • Yamagishi, M., M. Otani, M. Higashi, Y. Fukuta, K. Fukoi, M. Yano & T. Shimada, 1998. Chromosomal regions controlling anther culturability in rice (Oryza sativa L.). Euphytica 103: 227–234.

    Article  CAS  Google Scholar 

  • Zhou, H. & C.F. Konzak, 1992. Genetic control of green plant regeneration from anther culture of wheat. Genome 35: 957–961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torp, A., Hansen, A. & Andersen, S. Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119, 377–387 (2001). https://doi.org/10.1023/A:1017554129904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017554129904

Navigation