Skip to main content
Log in

Summer phytoplankton assemblages across trophic gradients in hard-water reservoirs

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Summer phytoplankton assemblages are described and characterised according to their prevalence in a series of hard-water reservoirs of eastern Spain that had been classified in trophic categories on OECD criteria. Distribution patterns of phytoplankton species were ordinated statistically by principal components analysis (PCA). The first component was strongly related to trophic gradient and it particularly discriminated the eutrophic and hypertrophic reservoirs. The second component segregated life-forms, so that (1), on the oligo-mesotrophic side, large dinoflagellates were separated from small centric diatoms, unicellular chrysophytes and filamentous ullotrichales and, on the eu-hypertrophic side (2), colonial greens and large desmids were separated from unicellular volvocales and small centric diatoms.

The large differences between eutrophic and hypertrophic reservoirs were also clearly identified in a second PCA, in which physical and chemical factors were used with the principal components solved from the phytoplankton data. From these results, a new trophic category was discerned, for which we propose the name ‘holotrophic’. This category applies to water bodies having the following main features: (1) concentrations of chorophyll, total P and total N in the range of the hypertrophic systems, but with much higher concentrations of dissolved phosphorus and ammonia and (2) phytoplankton predominantly composed by unicellular green flagellates (Pteromonas, Chlamydomonas) and chlorococcales (Scenedesmus), without cyanobacterial blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Hussein, M. M. & C. F. Mason, 1988. The phytoplankton community of a eutrophic reservoir. Hydrobiologia 169: 265–277.

    Article  CAS  Google Scholar 

  • Alvarez-Cobelas, M. & B. A. Jacobsen, 1992. Hypertrophic phytoplankton: an overview. Freshwat. Forum 2: 184–199.

    Google Scholar 

  • APHA – AWWA – WEF, 1992. Standard methods for the examination of water and wastewater. 18th edition. American Public Health Association. Washington D.C.

    Google Scholar 

  • Armengol, J., J. L. Riera & J. A. Morguí, 1991. Major ionic composition in the Spanish reservoirs. Verh. int. Ver. Limnol. 24: 1363–1366.

    CAS  Google Scholar 

  • Barone, R. & L. Naselli Flores, 1990. Osservazioni sulle comunità planctonique dei laghi artificiali siciliani: relazioni diversità –biomassa. Naturalista sicil. 14 (suppl.): 35–48.

    Google Scholar 

  • Barone, R. & L. Naselli Flores, 1994. Phytoplankton dynamics in a shallow, hypertrophic reservoir Lake Arancio, Sicily. Hydrobiologia 289: 199–214.

    Article  CAS  Google Scholar 

  • Estrada, M., 1975. Statistical consideration of some limnological parameters in Spanish reservoirs. Verh. int. Ver. Limnol. 19: 1849–1859.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for physical and chemical analysis of freshwaters. IBP Handbook no. 8. Blackwell Sci. Pub., Oxford, U.K.

    Google Scholar 

  • Margalef, R., M. D. Planas, J. Armengol, A. Vidal, N. Prat, A. Guisset, J. Toja & M. Estrada, 1976. Limnología de los embalses españoles. Dirección General de Obras Hidráulicas. MOP. Madrid. Pub. 123, 422 pp.

  • Margalef, R., M. Mir, & M. Estrada, 1982. Phytoplankton composition and distribution as an expression of properties of reservoirs. Can. W. Res. J. 7: 26–50.

    Google Scholar 

  • Mohammed, A. A., A. M. Ahmed & A. M. El-Otify, 1989. Field and laboratory studies on Nile phytoplankton in Egypt. IV Phytoplankton of Aswan High Dam Lake (Lake Nasser). Int. Revue ges. Hydrobiol. 74: 549–578.

    Google Scholar 

  • Moss, B., 1973. The influence of environmental factors on the distribution of freshwater algae: experimental study. IV. Growth of test species in natural lake waters and conclusion. J. Ecol. 61: 193–211.

    Article  CAS  Google Scholar 

  • Naselli Flores, L. & R. Barone, 1994. Relationship between trophic state and plankton community structure in 21 Sicilian dam reservoirs. Hydrobiologia 275/276: 197–205.

    Article  Google Scholar 

  • Norusis, M. J., 1990. SPSS Base System User's Guide. SPSS Inc. Chicago, 520 pp.

    Google Scholar 

  • OECD, 1982. Eutrophication of Waters. Monitoring, Assessment, and Control. OECD, Paris, 154 pp.

    Google Scholar 

  • Ortiz Casas, J. L. & R. Peña, 1984. Applicability of the OECD eutrophication models to Spanish reservoirs. Verh. int. Ver. Limnol. 22: 1521–1535.

    CAS  Google Scholar 

  • Reynolds, C. S., 1980. Phytoplankton assemblages and the periodicity in stratifying lake ecosystems. Holarct. Ecol. 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1982. Phytoplankton periodicity: its motivation, mechanisms and manipulation. Report of the Freshwater Biological Association 50: 60–75.

    Google Scholar 

  • Reynolds, C. S., 1984a. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.

    Article  Google Scholar 

  • Reynolds, C. S., 1984b. The ecology of freshwater phytoplankton. Cambridge University Press, 384 pp.

  • Reynolds, C. S., 1986. Experimental manipulations of the phytoplankton periodicity in large, limnetic enclosures in Blelham Tarn, English Lake District. Hydrobiologia 138: 43–64.

    Article  Google Scholar 

  • Reynolds, C. S., 1988. Functional morphology and the adaptative strategies of freshwater phytoplankton. In Sandgren, C. D. (ed), Growth and survival strategies of freshwater phytoplankton. Cambridge University Press: 388–433.

  • Riera, J. L., D. Jaume, J. De Manuel, J. A. Morgui & J. Armengol, 1992. Patterns of variation in the limnology of Spanish reservoirs: a regional study. Limnetica 8: 111–124.

    Google Scholar 

  • Rojo, C. & M. Alvarez-Cobelas, 1993. Hypertrophic phytoplankton and the intermediate disturbance hypothesis. Hydrobiologia 249: 43–57.

    Article  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 43: 34–62.

    Google Scholar 

  • Sabater, S. & J. Nolla, 1991. Distribution patterns of phytoplankton in Spanish reservoirs: first results and comparison after fifteen years. Verh. int. Ver. Limnol. 24: 1371–1375.

    Google Scholar 

  • Shapiro, J., 1989. Current beliefs regarding dominance by blue-greens: The case of the importance of CO2 and pH. Verh. int. Ver. Limnol. 24: 38–54.

    Google Scholar 

  • Sommer, U., 1989. Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophic lake. Limnol. Oceanogr. 34: 1162–1173.

    Article  CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Theor. Angew. Limnol. 9: 38 pp.

    Google Scholar 

  • Vegas Vilarrubia, T., 1994. Water chemistry of the Guri reservoir (rainy season 1989) – relationships between humic colour and aqueous iron and their limnological importance. Arch. Hydrobiol. 132: 69–94.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasí, M.J., Miracle, M.R., Camacho, A. et al. Summer phytoplankton assemblages across trophic gradients in hard-water reservoirs. Hydrobiologia 369, 27–43 (1998). https://doi.org/10.1023/A:1017051322293

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017051322293

Navigation