Skip to main content
Log in

A new liver metastatic and peritoneal dissemination model established from the same human pancreatic cancer cell line: Analysis using cDNA macroarray

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

To elucidate the mechanisms of metastasis, we established two sublines HPC-1H5 with a highly liver metastatic cell line and HPC-1P5a with a highly peritoneal disseminating cell line, which were sequentially selected from the parental pancreatic cancer cell line HPC-1. Using these three cell lines, we investigated several biological properties and mRNA levels of differentially-expressed genes involved in cancer metastasis by cDNA macroarray. Microscopic findings for the three cell lines were the same. The tumorigenicity, in vitro growth ability, motile activity, adhesive activity and the production of IL-8 of metastatic sublines were higher than those of parental HPC-1 cells. Particularly, HPC-1H5 cells showed clearly higher levels of IL-8 expression and tumors of HPC-1H5 cells grew faster and bigger than those of HPC-1P5a cells. In cDNA macroarray analysis of HPC-1H5 cells, 22 genes were up-regulated and 44 genes were down-regulated compared with parental HPC-1 cells. In HPC-1P5a cells, 9 genes were up-regulated and 28 genes were down-regulated compared with parental HPC-1 cells. This study provides a demonstration of global gene expression analysis of pancreatic cancer cells with liver metastasis and peritoneal dissemination. Furthermore, our results provide a new insight into the study of liver metastasis and peritoneal dissemination of human pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friess H, Kleeff J, Korc M et al. Molecular aspects of pancreatic cancer and future perspectives. Dig Surg 1999; 16: 281–90.

    Article  PubMed  CAS  Google Scholar 

  2. Yeo C J, Cameron J L. Pancreatic cancer. Curr Probl Surg 1999; 36: 59–159.

    Article  PubMed  CAS  Google Scholar 

  3. Yamamoto M A general view of pancreatic cancer in Japan and a proposal for a more practical staging system. Int J Clin Oncol 1999; 4: 267–72.

    Article  Google Scholar 

  4. Zhu ZW, Friess H, Wang L et al. Nerve growth factor exerts differential effects on the growth of human pancreatic cancer cells. Clin Cancer Res 2001; 7: 105–12.

    PubMed  CAS  Google Scholar 

  5. Shishido T, Yasoshima T, Hirata K et al. Establishment and characterization of human pancreatic carcinoma lines with a high metastatic potential in the liver of nude mice. Jpn J Surg 1999; 29: 519–25.

    Article  CAS  Google Scholar 

  6. Ikeda Y, Ezaki M, Hayashi I et al. Establishment and characterization of human pancreatic cancer cell lines in tissue culture and in nude mice. Jpn J Cancer Res; 81: 987–93.

  7. An Z, Wang X, Kubota T et al. A clinical nude mouse metastatic model for highly malignant human pancreatic cancer. Anticancer Res 1996; 16: 627–31.

    PubMed  CAS  Google Scholar 

  8. Matsuoka H, Seo Y, Fujikawa K et al. A newly establishment mouse model of peritoneal dissemination in human pancreatic cancer. Anticancer Res 1997; 17: 951–54.

    PubMed  CAS  Google Scholar 

  9. Nishimori H, Yasoshima T, Denno R et al. A new peritoneal dissemination model established from the human pancreatic cancer cell line. Pancreas 2001; 22: 348–56.

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi K, Ura H, Yasoshima T et al. Liver metastatic model for human gastric cancer established by orthtopic tumor cell implantation. World J Surg 2001; 25: 131–7.

    Article  PubMed  CAS  Google Scholar 

  11. Hosono J, Narita T, Kimura N et al. Involvement of adhesion molecules in metastasis of SW1990, human pancreatic cancer cells. J Surg Oncol 1998; 67: 77–84.

    Article  PubMed  CAS  Google Scholar 

  12. Vogelmann R, Kreuser ED, Adler G et al. Integrin α6 β1 role in metastatic behavior of human pancreatic carcinoma cells. Int J Cancer 1999; 80: 791–5.

    Article  PubMed  CAS  Google Scholar 

  13. Shimoyama S, Gansauge F, Gansauge S et al. Basal expression and cytokine induction of intercellular adhesion molecule-1 in human pancreatic cancer cell lines. J Exp Clin Cancer Res 1999; 18: 107–10.

    PubMed  CAS  Google Scholar 

  14. Saito K, Ishikura H, Kishimoto T et al. Interleukin-6 produced by pancreatic carcinoma cells enhances humoral immune responses against tumor cells: A possible event in tumor regression. Int J Cancer 1998; 75: 284–9.

    Article  PubMed  CAS  Google Scholar 

  15. Sato T, Sato N, Takahashi S et al. Establishment and characterization of a human pancreatic cell line (HPC-1). Tumor Res 1985; 20: 33–41.

    Google Scholar 

  16. Denno R, Yasoshima T, Hirata K et al. Tumorigenicity, motility and liver metastasis of human gastric carcinoma lines with high metastatic potential in the liver of the nude mice. Tumor Res 1996; 30: 57–65.

    Google Scholar 

  17. Yamaguchi K, Ura H, Yasoshima T et al. Establishment and characterization of a human gastric carcinoma cell line that is highly metastatic to lymph nodes. J Exp Clin Cancer Res 2000; 19: 113–20.

    PubMed  CAS  Google Scholar 

  18. Nishimori H, Yasoshima T, Denno R et al. A novel experimental mouse model of peritoneal dissemination of human gastric cancer cells: Different mechanisms in peritoneal dissemination and hematogenous metastasis. Jpn J Cancer Res 2000; 91: 715–22.

    PubMed  CAS  Google Scholar 

  19. Yasoshima T, Denno R, Kawaguchi S et al. Establishment and characterization of human gastric carcinoma lines with high metastatic potential in the liver: Changes in integrin expression associated with the ability to metastasize in the liver of nude mice. Jpn J Cancer Res 1996; 87: 153–60.

    PubMed  CAS  Google Scholar 

  20. Watanabe M, Takahashi Y, Ohta T et al. Inhibition of metastasis in human gastric cancer cells transfected with tissue inhibitor of metalloproteinase 1 gene in nude mice. Cancer 1996; 77: 1676–80.

    PubMed  CAS  Google Scholar 

  21. Arao S, Masumoto A, Otsuki M. Betal integrins play an essential role in adhesion and invasion of pancreatic carcinoma cells. Pancreas 2000; 20: 129–37.

    Article  PubMed  CAS  Google Scholar 

  22. Lohr M, Trautmann B, Gottler M et al. Expression and function of receptors for extracellular matrix proteins in human ductal adenocarcinomas of the pancreas. Pancreas 1996; 12: 248–59.

    Article  PubMed  CAS  Google Scholar 

  23. Fujimoto J, Sakaguchi H, Aoki I et al. Clinical implication of expression of interleukin-8 related to angiogenesis in uterine cervical cancer. Cancer Res 2000; 60: 2632–5.

    PubMed  CAS  Google Scholar 

  24. Luca M, Huang S, Gershenwald J et al. Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol 1997; 151: 1105–13.

    PubMed  CAS  Google Scholar 

  25. Xu L, Xie K, Mukaida N et al. Hypoxia-induced elevation in interleukin-8 expression by human ovarian carcinoma cells. Cancer Res 1999; 59: 5822–9.

    PubMed  CAS  Google Scholar 

  26. Carmeliet P. Mechanism of angiogenesis and arteriogenesis. Nature Medicine 2000; 6: 389–95.

    Article  PubMed  CAS  Google Scholar 

  27. Baker HC, Solorzano CC, Fidler IJ. Angiogenesis and cancer metastasis: antiangiogenetic therapy of human pancreatic adenocarcinoma. Int J Clin Oncol 2001; 6: 59–65.

    Article  PubMed  CAS  Google Scholar 

  28. Menke A, Philippi C, Vogelmann R et al. Down-regulation of E-cadherin gene expression by collagen type 1 and type 3 in pancreatic cancer cell lines. Cancer Res 2001; 61: 3508–17.

    PubMed  CAS  Google Scholar 

  29. Soumillion A, Van Damme J, De Ley M. Cloning and specific polymerized-chain-reaction amplification of a third change-separable human metallothionein isoform. Eur J Biochem 1992; 209: 999–1004.

    Article  PubMed  CAS  Google Scholar 

  30. Masters BA, Kelly EJ, Quaife CJ et al. Targeted discription of metallothionein 1 and 2 genes increases sensitivity to cadmium. Proc Natl Acad Sci 1994; 91: 584-8.

    Article  PubMed  CAS  Google Scholar 

  31. Piiper A, Leser J, Lutz MP et al. Subcellular distribution and function of Rab3A-D in pancreatic acinar AR42J cells. Biochem Biophys Res Commun 2001; 287: 746–51.

    Article  PubMed  CAS  Google Scholar 

  32. Nishiyama T, Tachibana M, Horiguchi Y et al. Immunotherapy of bladder cancer using autologous dendric cells pulsed with human lymphocyte antigen-A24-specific MAGE-3 peptide. Clin Cancer Res 2001; 7: 23–31.

    PubMed  CAS  Google Scholar 

  33. Imai N, Harashima N, Ito M et al. Identification of Lck-derived peptides capable of including HLA-A2-resticted and tumor-specific CTLs in cancer patients with distant metastases. Int J Cancer 2001; 94: 237–42.

    Article  PubMed  CAS  Google Scholar 

  34. Yamshchikov G, Thompson L, Ross WG et al. Analysis of a natural immune response against tumor antigens in a melanoma survivor: Lessons applicable to clinical trial evaluations. Clin Cancer Res 2001; 7: 909–16.

    Google Scholar 

  35. Li S, MacLachlan TK, De Luca A et al. The cdc-2-related kinase, PISSLRE, is essential for cell growth and acts in G2 phase of the cell cycle. Cancer Res 1995; 15: 3992–5.

    Google Scholar 

  36. Crawford J, Ianzano L, Savino M et al. The PISSLRE gene: structure, exon skipping, and exclusion as tumor suppressor in breast cancer. Genomics 1999; 56: 90–7.

    Article  PubMed  CAS  Google Scholar 

  37. Shim WS, The M, Mack PO et al. Inhibition of angiopoietin-1 expression in tumor cells by an antisense RNA approach inhibited xenograft tumor growth in immunodeficient mice. Int J Cancer 2001; 94: 6–15.

    Article  PubMed  CAS  Google Scholar 

  38. Bodey B, Bodey B Jr, Siegel SE et al. Immunocytochemical detection of the expression of members of the matrix metalloproteinase family in adenocarcinoma of the pancreas. In Vivo 2001; 15: 71–6.

    PubMed  CAS  Google Scholar 

  39. Su SB, Motoo Y, Iovanna JL et al. Expression of p8 in human pancreatic cancer. Clin Cancer Res 2001; 7: 309–13.

    PubMed  CAS  Google Scholar 

  40. Hippo Y, Yashiro M, Ishii M et al. Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph node. Cancer Res 2001; 61: 889–95.

    PubMed  CAS  Google Scholar 

  41. Notterman DA, Alon U, Sierk AJ et al. Transcriptional gene expression profiles of colorectal adeoma, adenocarcinoma and normal tissue examined by oligonucleotide arrays. Cancer Res 2001; 61: 3124–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, H., Nishimori, H., Yasoshima, T. et al. A new liver metastatic and peritoneal dissemination model established from the same human pancreatic cancer cell line: Analysis using cDNA macroarray. Clin Exp Metastasis 19, 391–399 (2002). https://doi.org/10.1023/A:1016370532618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016370532618

Navigation