Skip to main content
Log in

The Site of Absorption in the Small Intestine Determines Diltiazem Bioavailability in the Rabbit

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Since the ability of the small intestine to biotransform a drug may decrease in distal segments of the intestine, this study aimed to assess whether the site of administration in the small intestine could affect the systemic bioavailability of diltiazem and its two active metabolites, N-desmethyldiltiazem (MA) and desacetyldiltiazem (Ml).

Methods. Five mg/kg of diltiazem were administered into the lumen of the proximal (0–30 cm, n = 9) or the distal (150–180 cm) small intestine (n = 7) of anesthetized New Zealand rabbits. Blood samples were drawn from the femoral artery for 6 hours, and diltiazem, MA and M1 were assayed by HPLC.

Results. The area under the curve (AUC0 → ∞)of diltiazem administered into the distal small intestine was larger than that estimated when diltiazem was given in the proximal segment (14.20 ± 2.82 vs 8.14 ± 0.88 µg.min/ml, p < 0.05), due to a lower diltiazem oral clearance (440 ± 78 vs 660 ± 55 ml/min/kg, p < 0.05). The AUC0 → 360 of MA was not affected by the site of diltiazem administration, but the AUC0 →360 of M1 was increased when diltiazem was administered in the distal segment of the small intestine. When administered into the distal segment of the intestine, the molar sum of diltiazem and its active metabolites was 48% greater than when delivered into the 0–30 cm segment of the small intestine; as a consequence, absorption of diltiazem in distal segments of the small intestine may enhance its pharmacological response.

Conclusions. The site of absorption into the intestine modulates the bioavailability of diltiazem and its two active metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. T. Buckley, S. M. Grant., K. L. Goa, D. Mc Tavish and E. M. Sorkin. Diltiazem-A reappraisal of its pharmacological properties and therapeutic use. Drugs 39:757–806 (1990).

    Google Scholar 

  2. L. Pichard, G. Gillet, I. Fabre, I. Dallet-Beluche, C. Bonfils, J. P. Thenot and P. Maurel. Identification of the rabbit and human cytochromes P-450IIIA as the major enzymes involved in the N-demethylation of diltiazem. Drug Metab. Dispos. 18:711–719 (1990).

    Google Scholar 

  3. M. S. Smith, C. P. Verghese, D. G. Shand and E. L. C. Pritchett. Pharmacokinetic and pharmacodynamic effects of diltiazem. Am. J. Cardiol. 51:1369–1374 (1983).

    Google Scholar 

  4. P. Hermann, S. D. Rodger, G. Remones, J. P. Thenot, D. R. London and P. L. Morselli. Pharmacokinetics of diltiazem after intravenous and oral administration. Eur. J. Clin. Pharmacol. 24:349–352 (1983).

    Google Scholar 

  5. E. U. Kölle, H. R. Ochs and K. O. Vollmer. Pharmacokinetic model of diltiazem. Arzneim. Forsch. 33:972–977 (1983).

    Google Scholar 

  6. P. Hermann and P. L. Morselli. Pharmacokinetics of diltiazem and other calcium entry blockers. Acta Pharmacol. Toxicol. 57 (Suppl. II): 10–20 (1985).

    Google Scholar 

  7. H. Echizen and M. Eichelbaum. Clinical pharmacokinetics of verapamil, nifedipine and diltiazem. Clin. Pharmacokin. 11:425–449 (1986).

    Google Scholar 

  8. P. K. F. Yeung, S. J. Mosher, M. A. Quilliam and T. J. Montague. Species comparison of pharmacokinetics and metabolism of diltiazem in humans, dogs, rabbits and rats. Drug Metab. Dispos. 18:1055–1059 (1990).

    Google Scholar 

  9. J. Sugihara, Y. Sugawara, H. Ando, S. Harigaya, A. Etoh and K. Kohno. Studies on the metabolism of diltiazem in man. J. Pharmacobiodyn. 7:24–32 (1984).

    Google Scholar 

  10. Y. Sugawara, M. Ohasi, S. Nakamura, S. Usuki, T. Suzuki, Y. Ito, T. Kume, S. Harigaya, A. Nakayo, M. Gaino and H. Inoue. Metabolism of diltiazem. I. Structures of new acidic and basic metabolites in rat, dog and man. J. Pharmacobiodyn. 11:211–223 (1988).

    Google Scholar 

  11. Y. Sugawara, S. Nakamura, S. Usuki, Y. Ito, T. Suzuki, M. Ohashi, and S. Harigaya. Metabolism of diltiazem. II. Metabolic profile in rat, dog and man. J. Pharmacobiodyn. 11:224–233 (1988).

    Google Scholar 

  12. S. Nakamura, Y. Ito, T. Fukushima, Y. Sugawara, and M. Ohashi. Metabolism of diltiazem. III. Deamination of diltiazem in rat liver microsomes. J. Pharmacobiodyn. 13:612–621 (1990).

    Google Scholar 

  13. H. Yabana, T. Nagao and M. Sato. Cardiovascular effects of the metabolites of diltiazem in dogs. J. Cardiovasc. Pharmacol. 7:152–157 (1985).

    Google Scholar 

  14. D. R. Krishna and U. Klotz. Extrahepatic metabolism of drugs in humans. Clin. Pharmacokinet. 26:144–160 (1994).

    Google Scholar 

  15. Y. K. Tam. Individual variation in first-pass metabolism. Clin. Pharmacokinet. 25:300–328 (1993).

    Google Scholar 

  16. W. H. M. Peters, P. G. Kremers. Cytochromes P-450 in the intestinal mucosa of man. Biochem. Pharmacol. 38:1535–1538 (1989).

    Google Scholar 

  17. G. M. Pacifici, M. Franchi, P. G. Gervasi, V. Longo, P. di Simplico, A. Temellini, L. Giuliani. Profile of drug-metabolizing enzymes in human ileum and colon. Pharmacology 38:137–145 (1989).

    Google Scholar 

  18. W. H. M. Peters, L. Kock, F. M. Nagengast, P. G. Kremers. Biotransformation enzymes in human intestine: critical low levels in the colon ? Gut 32:408–412 (1991).

    Google Scholar 

  19. P. du Souich, H. Maurice, L. Héroux. Contribution of the small intestine to the first-pass uptake and systemic clearance of propranolol in conscious rabbits. Drug Metab. Dispos. 23:279–284 (1995).

    Google Scholar 

  20. W. Homsy, M. Lefebvre, G. Caillé, P. du Souich. Metabolism of diltiazem in hepatic and extra-hepatic tissues of rabbits: in vitro studies. Pharm. Res. 12:609–614 (1995).

    Google Scholar 

  21. R. S. Chhabra and J. R. Fouts. Biochemical properties of some microsomal xenobiotic-metabolizing enzymes in rabbit small intestine. Drug Metab. Dispos. 4:208–214 (1976).

    Google Scholar 

  22. G. Caillé, L. Dubé, Y. Théorêt, F. Varin, N. Mousseau and I. McGilveray. Stability study of diltiazem and two of its metabolites using a high performance liquid chromatographic method. Biopharm. Drug Dispos. 10:107–114 (1989).

    Google Scholar 

  23. C. Abdallah, J. G. Besner and P. du Souich. Presystemic elimination of morphine in anesthetized rabbits. Contribution of the intestine, liver and lungs. Drug Metab. Dispos. 23:738–744 (1995).

    Google Scholar 

  24. M. Gibaldi and D. Perrier. Multicompartment models. In J. Swarbrick ed., Pharmacokinetics, Marcel Dekker inc., New York, 1982, pp. 45–112.

    Google Scholar 

  25. B. J. Winer. Statistical principles in experimental design, McGraw Hill Publications, New York, 1971, pp. 201–204.

    Google Scholar 

  26. G. M. Pacifici, M. Franchi, C. Bencini, F. Repetti, N. Di Lascio and G. B. Muraro. Tissue distribution of drug-metabolizing enzymes in humans. Xenobiotica. 18:849–856 (1988).

    Google Scholar 

  27. M. D. Rawlins. Extrahepatic drug metabolism. In G. R. Wilkinson and M. D. Rawlins (eds.), Drug metabolism and Disposition: Considerations in clinical pharmacology, MTP Press Limited, Hingham, Massachusetts, 1985, pp. 21–33.

    Google Scholar 

  28. L. S. Kaminsky. Small intestinal cytochromes P450. Critical Rev. Toxicol. 21:407–422 (1992).

    Google Scholar 

  29. C. F. George. Drug metabolism by the gastrointestinal mucosa. Clin. Pharmacokinet. 6:259–274 (1981).

    Google Scholar 

  30. H. L. Bonkovsky, H-P. Hauri, U. Marti, R. Gasser, U. A. Meyer. Cytochromes P450 of small intestinal epithelial cells. Gut 88:458–467 (1985).

    Google Scholar 

  31. I. de Waziers, P. H. Cugnenc, C. S. Yang, J. P. Leroux and P. H. Beaune. Cytochrome P-450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J. Pharmacol. Exp. Ther. 253:387–394 (1990).

    Google Scholar 

  32. D. J. Back, S. M. Rogers. Review: first-pass metabolism by the gastro-intestinal mucosa. Aliment. Pharmacol. Ther. 1:339–357 (1987).

    Google Scholar 

  33. W. H. M. Peters, F. M. Nagengast, J. H. M. van Tongeren. Glutathione S-transferase, cytochrome P450 and uridine 5′-diphosphate-glucuronyltransferase in human small intestine and liver. Gastroenterol. 96:783–789 (1989).

    Google Scholar 

  34. P. Beaune. Les cytochromes P450 humains. Thérapie 48:521–526 (1993).

    Google Scholar 

  35. G. A. O'Donovan, and J. Neuhard. Pyrimidine metabolism in microorganisms. Bacteriol. Rev. 34:278–343 (1970).

    Google Scholar 

  36. B. E. Harris, B. W. Manning, T. W. Federle, and R. B. Diasio. Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora. Antimicrob. Agent Chemother. 29:44–48 (1986).

    Google Scholar 

  37. C. Wu, and K. P. Mathews. Generation of drug metabolite antigenicity in the intestinal mucosa. Immunopharmacol. 12:53–58 (1986).

    Google Scholar 

  38. L. A. Wheeler, F. B. Sodeberg, and P. Goldman. The relationship between nitro group reduction and the intestinal microflora. J. Pharmacol. Exp. Ther. 194:135–144 (1975).

    Google Scholar 

  39. M. B. Anfrère, B. A. Hoener, and M. Vore. Reductive metabolism of nitrofurantoin in the rat. Am. Soc. Pharmacol. Exp. Ther. 6:403–411 (1978).

    Google Scholar 

  40. P. Goldman. Drug metabolism by gastrointestinal flora: 3 case histories. In L. F. Prescott and W. S. Nimmo, eds., Drug Absorption, Adis Press, Sydney, pp. 88–89 (1981).

    Google Scholar 

  41. A. J. Glazko, L. M. Wolf, W. A. Dill, and A. C. Bratton. Biochemical studies on chloramphenicol (Chloromycetin). II. Tissue distribution and excretion studies. J. Pharmacol. Exp. Ther. 96:445–459 (1949).

    Google Scholar 

  42. P. du Souich, N. Léry, L. Léry, F. Varin, S. Boucher, M. Vézina, D. Pilon, J. Spénard and G. Caillé. Influence of food on the bioavailability of diltiazem and two of its metabolites following the administration of conventional tablets and slow-release capsules. Biopharm. Drug Disposit. 11:137–147 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homsy, W., Caillé, G. & du Souich, P. The Site of Absorption in the Small Intestine Determines Diltiazem Bioavailability in the Rabbit. Pharm Res 12, 1722–1726 (1995). https://doi.org/10.1023/A:1016217822770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016217822770

Navigation