Skip to main content
Log in

EPR Characterization of Ubisemiquinones and Iron–Sulfur Cluster N2, Central Components of the Energy Coupling in the NADH-Ubiquinone Oxidoreductase (Complex I) In Situ

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The proton-translocating NADH-ubiquinone oxidoreductase (complex I) is the largest and least understood respiratory complex. The intrinsic redox components (FMN and iron–sulfur clusters) reside in the promontory part of the complex. Ubiquinone is the most possible key player in proton-pumping reactions in the membrane part. Here we report the presence of three distinct semiquinone species in complex I in situ, showing widely different spin relaxation profiles. As our first approach, the semiquinone forms were trapped during the steady state NADH-ubiquinone-1 (Q1) reactions in the tightly coupled, activated bovine heart submitochondrial particles, and were named SQNf (fast-relaxing component), SQNs (slow-relaxing), and SQNx (very slow relaxing). This indicates the presence of at least three different quinone-binding sites in complex I. In the current study, special attention was placed on the SQNf, because of its high sensitivities to \(\Delta \tilde \mu _{H^ + } \) and to specific complex I inhibitors (rotenone and piericidin A) in a unique manner. Rotenone inhibits the forward electron transfer reaction more strongly than the reverse reaction, while piericidine A inhibits both reactions with a similar potency. Rotenone quenched the SQNf signal at a much lower concentration than that required to quench the slower relaxing components (SQNs and SQNx). A close correlation was shown between the line shape alteration of the g = 2.05 signal of the cluster N2 and the quenching of the SQNf signal, using two different experimental approaches: (1) changing the \(\Delta \tilde \mu _{H^ + } \) poise by the oligomycin titration which decreases proton leak across the SMP membrane; (2) inhibiting the reverse electron transfer with different concentrations of rotenone. These new experimental results further strengthen our earlier proposal that a direct spin-coupling occurs between SQNf and cluster N2. We discuss the implications of these findings in connection with the energy coupling mechanism in complex I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aasa, R., and Vänngård, T. (1975). J. Magn. Res. 19, 308–315.

    Google Scholar 

  • Abragam, A., and Bleaney, B. (1970). Electron Paramagnetic Resonance of Transition Ions, Calendar Press, Oxford.

    Google Scholar 

  • Ahlers, P. M., Garofano, A., Kerscher, S. J., and Brandt, U. (2000a). Biochim. Biophys. Acta 1459, 258–265.

    Google Scholar 

  • Ahlers, P. M., Zwicker, K., Kerscher, S., and Brandt, U. (2000b). J. Biol. Chem. 275, 23577–23582.

    Google Scholar 

  • Albracht, S. P. (1993). Biochim. Biophys. Acta 1144, 221–224.

    Google Scholar 

  • Beinert, H., and Albracht, S. P. (1982). Biochim. Biophys. Acta 683, 245–277.

    Google Scholar 

  • Bowyer, J. R., and Ohnishi, T. (1985). EPR spectroscopy in the study of ubisemiquinones in redox chains. In Coenzyme Q (Lenaz, G., ed.), Wiley, New York, pp. 409–432.

    Google Scholar 

  • Brandt, U. (1997). Biochim. Biophys. Acta 1318, 79–91.

    Google Scholar 

  • Brandt, U. (1999). Biofactors 9, 95–101.

    Google Scholar 

  • Brown, G. C., and Brand, M. D. (1988). Biochem. J. 252, 473–479.

    Google Scholar 

  • Brudvig, G. W., Blair, D. F., and Chan, S. I. (1984). J. Biol. Chem. 259, 11001–11009.

    Google Scholar 

  • Burbaev, D. S., Blumenfeld, L. A., and Zviagilskay, R. A. (1983). Biofizika 28, 292–297.

    Google Scholar 

  • Burbaev, D. S., Moroz, I. A., Kotlyar, A. B., Sled, V. D., and Vinogradov, A. D. (1989). FEBS Lett. 254, 47–51.

    Google Scholar 

  • Burbaev, D. S., and Voevodskaya, N. V. (1985). Zurnal Fizicheskoi Khimii 59, 2287–2291.

    Google Scholar 

  • Cammack, R., Williams, R., Guigliarelli, B., More, C., and Bertrand, P. (1994). Biochem. Soc. Trans. 22, 721–725.

    Google Scholar 

  • Chumakov, V. M., Kalinichenko, L. P., and Kalmanson, A. E. (1966). Biofizika 11, 910–913.

    Google Scholar 

  • Darrouzet, E., and Dupuis, A. (1997). Biochim. Biophys. Acta 1319, 1–4.

    Google Scholar 

  • Degli Esposti, M. (1998). Biochim. Biophys. Acta 1364, 222–235.

    Google Scholar 

  • Degli Esposti, M., and Ghelli, A. (1994). Biochim. Biophys. Acta 1187, 116–120.

    Google Scholar 

  • de Jong, A. M. P., and Albracht, S. P. J. (1994). Eur. J. Biochem. 222, 975–982.

    Google Scholar 

  • de Jong, A. M., Kotlyar, A. B., and Albracht, S. P. (1994). Biochim. Biophys. Acta 1186, 163–171.

    Google Scholar 

  • DiVirgilio, F., and Azzone, G. F. (1982). J. Biol. Chem. 257, 4106–4113.

    Google Scholar 

  • Dupuis, A., Prieur, I., and Lunardi, J. (2001). J. Bioenerg. Biomembr. 33, 159–168.

    Google Scholar 

  • Dutton, P. L., Moser, C. C., Sled, V. D., Daldal, F., and Ohnishi, T. (1998). Biochim. Biophys. Acta 1364, 245–257.

    Google Scholar 

  • Faeder, E. J., and Siegel, L. M. (1973). Anal. Biochem. 53, 332–336.

    Google Scholar 

  • Finel, M., Majander, A. S., Tyynelä, J., De Jong, A. M. P., Albracht, S. P. J., and Wikström, M. (1994). Eur. J. Biochem. 226, 237–242.

    Google Scholar 

  • Fisher, N., and Rich, P. R. (2000). J. Mol. Biol. 296, 1153–1162.

    Google Scholar 

  • Friedrich, T. (1998). Biochim. Biophys. Acta 1364, 134–146.

    Google Scholar 

  • Friedrich, T., and Scheide, D. (2000). FEBS Lett. 479, 1–5.

    Google Scholar 

  • Friedrich, T., van Heek, P., Leif, H., Ohnishi, T., Forche, E., Kunze, B., Jansen, R., Trowitzsch-Kienast, W., Höfle, G., Reichenbach, H., and Weiss, H. (1994). Eur. J. Biochem. 219, 691–698.

    Google Scholar 

  • Friedrich, T., and Weiss, H. (1997). J. Theor. Biol. 187, 529–540.

    Google Scholar 

  • Galkin, A. S., Grivennikova, V. G., and Vinogradov, A. D. (1999). FEBS Lett. 451, 157–161.

    Google Scholar 

  • Goodman, G., and Leigh, J. S., Jr. (1985). Biochemistry 24a, 2310–2317.

    Google Scholar 

  • Gornall, A. B., Bardwill, C. S., and David, M. M. (1949). oJ. Biol. Chem. 177, 751–766.

    Google Scholar 

  • Grivennikova, V. G., Maklashina, E. O., Gavrikova, E. V., and Vinogradov, A. D. (1997). Biochim. Biophys. Acta 1319, 223–232.

    Google Scholar 

  • Hamamoto, T., Hashimoto, M., Hino, M., Kitada, M., Seto, Y., Kudo, T., and Horikoshi, K. (1994). Mol. Microbiol. 14, 939–946.

    Google Scholar 

  • Hatefi, Y. (1985). Annu. Rev. Biochem. 54, 1015–1069.

    Google Scholar 

  • Hirsh, D. J., Beck, W. F., Lynch, J. B., Que, L., Jr., and Brudvig, G. W. (1992). J. Am. Chem. Soc. 114, 7475–7481.

    Google Scholar 

  • Ingledew, W. J., and Ohnishi, T. (1980). Biochem. J. 186, 111–117.

    Google Scholar 

  • Kashani-Poor, N., Zwicker, K., Kerscher, S., and Brandt, U. (2001). J. Biol. Chem. 276, 24082–24087.

    Google Scholar 

  • Kerscher, S., Kashani-Poor, N., Zwicker, K., Zickermann, V., and Brandt, U. (2001). J. Bioenerg. Biomembr. 33, 187–196.

    Google Scholar 

  • Kotlyar, A. B., Sled, V. D., Burbaev, D. S., Moroz, I. A., and Vinogradov, A. D. (1990). FEBS Lett. 264, 17–20.

    Google Scholar 

  • Kotlyar, A. B., Sled, V. D., and Vinogradov, A. D. (1992). Biochim. Biophys. Acta 1098, 144–150.

    Google Scholar 

  • Kotlyar, A. B., and Vinogradov, A. D. (1990). Biochim. Biophys. Acta 1019, 151–158.

    Google Scholar 

  • Krishnamoorthy, G., and Hinkle, P. C. (1988). J. Biol. Chem. 263, 17566–17575.

    Google Scholar 

  • Kulikov, A. V., Likhtenshtein, G. I., Rozantsev, E. G., Suskina, V. I., and Shapiro, A. B. (1972). Biofizika 17, 42–48.

    Google Scholar 

  • Lee, C.-P., and Ernster, L. (1967). Methods Enzymol. 10, 543–548.

    Google Scholar 

  • Leif, H., Sled, V. D., Ohnishi, T., Weiss, H., and Friedrich, T. (1995). Eur. J. Biochem. 230, 538–548.

    Google Scholar 

  • Leigh, J. S. J. (1970). J. Chem. Phys. 52, 2608–2612.

    Google Scholar 

  • Lenaz, G. (1998). Biochim. Biophys. Acta 1364, 207–221.

    Google Scholar 

  • Meinhardt, S. W., Kula, T., Yagi, T., Lillich, T., and Ohnishi, T. (1987). J. Biol. Chem. 262, 9147–9153.

    Google Scholar 

  • Miki, T., Yu, L., and Yu, C. A. (1992). Arch. Biochem. Biophys. 293, 61–66.

    Google Scholar 

  • Mitchell, P. (1966). Biol. Rev. Camb. Philos. Soc. 41, 445–502.

    Google Scholar 

  • Miyoshi, H. (1998). Biochim. Biophys. Acta 1364, 236–244.

    Google Scholar 

  • Ohnishi, T. (1979). Mitochondrial iron—sulfur flavodehydrogenases. In Membrane Proteins in Energy Transduction (Capaldi, R. A., ed.), Marcel Dekker, New York, pp. 1–87.

    Google Scholar 

  • Ohnishi, T. (1998). Biochim. Biophys. Acta 1364, 186–206.

    Google Scholar 

  • Ohnishi, T., and Salerno, J. C. (1982). Iron—sulfur clusters in the mitochondrial electron-transport chain. In Iron—Sulfur Proteins, Vol. 4 (Spiro, T. G., ed.), Wiley, New York, pp. 285–327.

    Google Scholar 

  • Ohnishi, T., Sled, V. D., Yano, T., Yagi, T., Burbaev, D. S., and Vinogradov, A. D. (1998). Biochim. Biophys. Acta 365, 301–308.

    Google Scholar 

  • Okun, J. G., Lummen, P., and Brandt, U. (1999). J. Biol. Chem. 274, 2625–2630.

    Google Scholar 

  • Poole, C. P. J. (1967). Electron Spin Resonance. A Comprehensive Treatise on Experimental Techniques, Interscience, New York.

    Google Scholar 

  • Rabenstein, M. D., and Shin, Y. K. (1995). Proc. Natl. Acad. Sci. U.S.A. 92, 8239–8243.

    Google Scholar 

  • Ragan, C. I. (1990). Biochem. Soc. Trans. 18, 515–516.

    Google Scholar 

  • Rasmussen T., Scheide, D., Brors, B., Kintscher, L., Weiss, H., and Friedrich, T. (2001). Biochemistry 40, 6124–6131.

    Google Scholar 

  • Redfield, A. G. (1955). Phys. Rev. 98, 1787–1809.

    Google Scholar 

  • Rieske, J. S. (1967). Methods Enzymol. 10, 488–493.

    Google Scholar 

  • Rupp, H., Rao, K. K., Hall, D. O., and Cammack, R. (1978). Biochim. Biophys. Acta 537, 255–260.

    Google Scholar 

  • Salerno, J. C., Blum, H., and Ohnishi, T. (1979). Biochim. Biophys. Acta 547, 270–281.

    Google Scholar 

  • Sazanov, L. A., Peak-Chew, S. Y., Fearnley, I. M., and Walker, J. E. (2000). Biochemistry 39, 7229–7235.

    Google Scholar 

  • Scholes, T. A., and Hinkle, P. C. (1984). Biochemistry 23, 3341–3345.

    Google Scholar 

  • Schuler, F., and Casida, J. E. (2001). Biochim. Biophys. Acta 1506, 79–87.

    Google Scholar 

  • Schuler, F., Yano, T., Di Bernardo, S., Yagi, T., Yankovskaya, V., Singer, P. T., and Casida, J. E. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 4149–4153.

    Google Scholar 

  • Steuber, J. (2001). J. Bioenerg. Biomembr. 33, 179–186.

    Google Scholar 

  • Steuber, J., Schmid, C., Rufibach, M., and Dimroth, P. (2000). Mol. Microbiol. 35, 428–434.

    Google Scholar 

  • Ushakova, A.V., Grivennikova V. G., Ohnishi, T., and Vinogradov, A. D. (1999). Biochim. Biophys. Acta 1409, 143–153.

    Google Scholar 

  • van Belzen, R., Kotlyar, A. B., Moon, N., Dunham, W. R., and Albracht, S. P. J. (1997). Biochemistry 36, 886–893.

    Google Scholar 

  • Vinogradov, A. D. (1993). J. Bioenerg. Biomembr. 25, 367–375.

    Google Scholar 

  • Vinogradov, A. D., Sled, V. D., Burbaev, D. S., Grivennikova, V. G., Moroz, I. A., and Ohnishi, T. (1995). FEBS Lett. 370, 83–87.

    Google Scholar 

  • Walker, J. E. (1992). Q. Rev. Biophys. 25, 253–324.

    Google Scholar 

  • Wang, D.-C., Meinhardt, S.W., Sackmann, U., Weiss, H., and Ohnishi, T. (1991). Eur. J. Biochem. 197, 257–264.

    Google Scholar 

  • Weiss, H., and Friedrich, T. (1991). J. Bioenerg. Biomembr. 23, 743–754.

    Google Scholar 

  • Weiss, H., Friedrich, T., Hofhaus, G., and Preis, D. (1991). Eur. J. Biochem 197, 563–576.

    Google Scholar 

  • Wikström, M. (1984). FEBS Lett. 169, 300–304.

    Google Scholar 

  • Yano, T., Magnitsky, S., Sled, V. D., Ohnishi, T., and Yagi, T. (1999). J. Biol. Chem. 274, 28598–28605.

    Google Scholar 

  • Yano, T., and Ohnishi, T. (2001). J. Bioenerg. Biomembr. 33, 213–222.

    Google Scholar 

  • Yano, T., and Yagi, T. (1999). J. Biol. Chem. 274, 28606–28611.

    Google Scholar 

  • Zharova, T. V., and Vinogradov, A. D. (1997). Biochim. Biophys. Acta 1320, 256–264.

    Google Scholar 

  • Zickermann, V., Barquera, B.,Wikström, M., and Finel, M. (1998). Biochemistry 37, 11792–11796.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnitsky, S., Toulokhonova, L., Yano, T. et al. EPR Characterization of Ubisemiquinones and Iron–Sulfur Cluster N2, Central Components of the Energy Coupling in the NADH-Ubiquinone Oxidoreductase (Complex I) In Situ. J Bioenerg Biomembr 34, 193–208 (2002). https://doi.org/10.1023/A:1016083419979

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016083419979

Navigation