Skip to main content
Log in

Using Inter-SINE–PCR to Study Mammalian Phylogeny

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Results of the use of the fingerprinting method related to short interspersed elements (SINEs), inter-SINE–PCR, in the study of phylogenetic and taxonomic relationship in mammals from orders Chiroptera (family Vespertilionidae) and Lipotyphla (family Erinaceidae) are reported. The inter-SINE–PCR method is based on the amplification of fragments situated between copies of SINEs, which are short retroposons spaced 100 to 1000 bp apart. Specifically selected primers were used, which are complementary to consensus sequences of two short retroposons: the mammalian interspersed repeat (MIR), which is typical of all mammals and some other vertebrates, was used in the cases of bats and Erinaceidae, and the ERI-1 element recently isolated from the genome of the Daurian hedgehog was used in the case of Erinaceidae. The results support the current view on phylogenetic relationship between hedgehogs belonging to genera Erinaceus, Hemiechinus, and Paraechinus (but not the genus Atelerix). In bats, the phylogenetic reconstruction revealed a statistically valid topology only at lower taxonomic levels, whereas the topology for the genus and supragenus ranks was unresolved and fan-shaped. The benefits and limitations of the inter-SINE–PCR method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Williams, G.K., Kubelik, A.R., Livak, J., et al., DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers, Nucleic Acids Res., 1990, vol. 18, no. 22, pp. 6531-6535.

    Google Scholar 

  2. Zietkiewicz, E., Rafalski, A., and Labuda, D., Genome Fingerprinting by Simple Sequence Report (SSR)-Anchored Polymerase Chain Reaction Amplification, Genomics, 1994, vol. 20, pp. 176-183.

    Google Scholar 

  3. Vos, P., Hogers, R., Bleeker, M., et al., AFLP: A New Technique for DNA Fingerprinting, Nucleic Acids Res., 1995, vol. 23, no. 21, pp.4407-4414.

    Google Scholar 

  4. Kramerov, D.A., Kraev, A.S., Ryskov, A.P., and Skryabin, K.G., The Primary Structure of the Mouse Highly Repetitive Sequence Homologous to Double-Stranded Pre-mRNA Regions, Dokl. Akad. Nauk SSSR, 1980, vol. 252, pp. 241-244.

    Google Scholar 

  5. Singer, M.F., SINEs and LINEs: Highly Repeated Short and Long Interspersed Sequences in Mammalian Genomes, Cell (Cambridge, Mass.), 1982, vol. 28, pp.433-434.

    Google Scholar 

  6. Okada, N., SINEs, Curr. Opin. Genet. Dev., 1990, vol. 1, pp. 498-504.

    Google Scholar 

  7. Serdobova, I.M. and Kramerov, D.A., Short Retroposons of the B2 Superfamily: Evolution and Application for the Study of Rodent Phylogeny, J. Mol. Evol., 1998, vol. 46, pp. 202-214.

    Google Scholar 

  8. Kramerov, D.A., Evidence for the Phylogenetic Relatedness of the Families Gliridae and Sciuridae Based on the Analysis of the B1-DID Short Retroposon, Dokl. Akad. Nauk, 1999, vol. 364, no. 2, pp. 277-280.

    Google Scholar 

  9. Shimamura, M., Yasue, H., Ohshima, K., et al., Molecular Evidence from Retroposons That Whales Form a Clade within Even-Toed Ungulates, Nature, 1997, vol. 388, pp. 666-670.

    Google Scholar 

  10. Shedlock, A.M. and Okada, N., SINE Insertions: Powerful Tools for Molecular Systematics,BioEssays, 2000, vol. 22, no. 2, pp. 148-160.

    Google Scholar 

  11. Nelson, D.L., Interspersed Repetitive Sequence Polymerase Chain Reaction (IRS-PCR) for Generation of Human DNA Fragments from Complex Sources, Methods, Companion Methods Enzymol., 1991, vol. 2, pp. 60-74.

    Google Scholar 

  12. Kaukinen, J. and Varvio, S.-L., Artiodactyl Retroposons: Association with Microsatellites and Use in SINEmorph Detection by PCR, Nucleic Acids Res., 1992, vol. 20, pp. 2955-2958.

    Google Scholar 

  13. Smit, A. and Riggs, A., MIRs Are Classic tRNA-Derived SINEs That Amplified Before the Mammalian Radiation, Nucleic Acids Res., 1995, vol. 23, no. 1, pp. 98-102.

    Google Scholar 

  14. Jurka, J., Zietkiewicz, E., and Labuda, D., Ubiquitous Mammalian-Wide Interspersed Repeats (MIRs) Are Molecular Fossils from the Mesozoic Era, Nucleic Acids Res., 1995, vol. 23, no. 1, pp. 170-175.

    Google Scholar 

  15. Gilbert, N. and Labuda, D., Evolutionary Inventions and Continuity of CORE-SINEs in Mammals, J. Mol. Biol., 2000, vol. 298, pp. 365-377.

    Google Scholar 

  16. Buntjer, J.B., DNA Repeats in the Vertebrate Genome as Probes in Phylogeny and Species Identification, Netherlands: Utrecht Univ., 1997, pp. 1-130.

    Google Scholar 

  17. Borodulina, O.R. and Kramerov, D.A., Short Interspersed Elements (SINEs) from Insectivores: Two Classes of Mammalian SINEs Distinguished by A-Rich Tail Structure, Mamm. Genome, 2001, vol. 12, pp. 779-786.

    Google Scholar 

  18. Madsen, O., Scally, M., Douady, C.J., et al., Parallel Adaptive Radiations in Two Major Clades of Placental Mammals, Nature, 2001, vol. 409, pp. 610-614.

    Google Scholar 

  19. Killian, J.K., Buckley, T.R., Stewart, N., et al., Marsupials and Eutherians Reunited: Genetic Evidence for the Theria, Mamm. Genome, 2001, vol. 12, no. 7, pp. 513-517.

    Google Scholar 

  20. Karrol, E., Paleontologiya i evolyutsiya pozvonochnykh (Vertebrate Paleology and Evolution), Moscow: Mir, 1993, vol. 3, pp. 1-312.

    Google Scholar 

  21. Arrigi, F.E., Bergendahl, G., and Mandel, M., Isolation and Characterization of DNA from Fixed Cells and Tissues, Exp. Cell Res., 1968, vol. 50, pp. 47-53.

    Google Scholar 

  22. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  23. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony(*And Other Methods), Ver. 4, Sunderland, Mass.: Sinauer Associates, 1998.

    Google Scholar 

  24. Van de Peer, V. and De Wachter, R., TREECON: A Software Package for the Construction and Drawing of Evolutionary Trees, Cabios, 1994, vol. 9, no. 2, pp. 177-182.

    Google Scholar 

  25. Link, W., Dixens, C., Sirigh, M., et al., Genetic Diversity in European Mediterranean Faba Bean Germ Plasm Revealed by RAPD Markers, Theor. Appl. Genet., 1995, vol. 90, pp. 27-32.

    Google Scholar 

  26. Corbett, G.B. and Hill, J.E., Mammals of the Indo-Malayan Region: Systematic Review, Oxford Univ. Press, 1992.

  27. Zaitsev, M.V., To the Systematics and Diagnostics of Hedgehog Species of the Subgenus Erinaceus (Mammalia, Erinaceidae) from the Fauna of the Soviet Union, Zool. Zh., 1984, vol. 63, no. 5, pp. 720-729.

    Google Scholar 

  28. Filippucci, M.G. and Simson, S., Allozyme Variation and Divergence in Erinaceidae (Mammalia, Insectivora), Israel J. Zool., 1996, vol. 42, pp. 335-345.

    Google Scholar 

  29. Santucci, F., Emerson, B.C., and Hewitt, G.M., Mito-chondrial DNA Phylogeography of European Hedgehogs, Mol. Ecol., 1998, vol. 7, pp. 1-10.

    Google Scholar 

  30. Bannikova, A.A., Fedorova, L.V., Fedorov, A.N., et al., A Comparison of Repetitive DNA Sequences in Mammals of the Family Erinaceidae by Means of Restriction Enzyme Analysis, Genetika (Moscow), 1995, vol. 31, no. 11, pp. 1498-1506.

    Google Scholar 

  31. Sokolov, V.E., Sistematika mlekopitayushchikh(Mammalian Systematics), Moscow: Vysshaya Shkola, 1973.

    Google Scholar 

  32. Frost, D.R., Wozencraft, W.C., and Hoffmann, R.S., Phylogenetic Relationships of Hedgehogs and Gymnures (Mammalia: Insectivora; Erinaceidae), Smithsonian Contribution to Zoology, 1991, vol. 518, pp. 1-69.

    Google Scholar 

  33. Hutterer, R., Order Insectivora, Mammal Species of the World, Wilson, D.E. and Reeder, D.A., Eds., Smithsonian Inst., 1993, pp. 69-130.

  34. Yates, T.L., Insectivores: Elephant Ahrews, Tree Shrews and Dermopterans, Orders and Families of Recent Mammals of the World, Anderson, S. and Knox, J., Eds., New York, 1984, pp. 117-144.

  35. Anderson, S. and Jones, K., Recent Mammals of the World, New York: Ronald, 1967.

    Google Scholar 

  36. Robbins, C.B. and Setzer, H.W., Morphometrics and Distinctness of the Hedgehog Genera (Insectivora: Erinaceidae), Proc. Biol. Soc. (Washington), 1985, vol. 98, pp. 112-120.

    Google Scholar 

  37. Corbet, G.B., The Family Erinaceidae: A Synthesis of Its Taxonomy, Phylogeny, Ecology and Zoogeography, Mamm. Rev., 1988, vol. 18, no. 3, pp. 117-172.

    Google Scholar 

  38. Volleth, M., Karyotyp Evolution and Phylogenie der Vespertilionidae (Mammalia: Chiroptera), Den Naturwissenschaftlichen Fakultaten der Friedrich-Alexander-Universitat Erlangen-Nurnberg zur Erlangung des Doktor-grades, 1989, pp. 1-262.

  39. Volleth, M. and Heller, K.-G., Phylogenetic Relationships of Vespertilionid Genera (Mammalia: Chiroptera) as Revealed by Karyological Analysis, Z. Zool. Syst. Evolut.-Forsch, 1994, vol. 32, pp. 11-34.

    Google Scholar 

  40. Hill, J.E. and Harrison, D.L., The Baculum in the Vespertilioninae (Chiroptera: Vespertilionidae) with a Systematic Review, a Synopsis of Pipistrellus and Eptesicus, and the Description of a New Genus and Subgenus, Bull. Br. Mus. Nat. Hist., 1987, vol. 52, pp. 225-305.

    Google Scholar 

  41. Horacek, I. and Hanak, V., Generic Status of Pipistrellus savii and Comments on Classification of the Genus Pipistrellus (Chiroptera, Vespertilionidae), Myotis, 1985-1986, vols. 23-24, pp. 9-16.

    Google Scholar 

  42. Backeljau, T., De Briun, L., Wolf, H., et al., Random Amplified Polymorphic DNA (RAPD) and Parsimony Methods, Cladistics, 1995, vol. 11, pp. 119-130.

    Google Scholar 

  43. Rothuizen, J. and Van Wolveren, M., Randomly Amplified DNA Polymorphisms in Dogs Are Reproducible and Display Mendelian Transmission, Anim. Genet., 1994, vol. 25, pp. 13-18.

    Google Scholar 

  44. Borodulina, O.R. and Kramerov, D.A., Wide Distribution of Short Interspersed Elements among Eukaryotic Genomes,FEBS Lett., 1999, vol. 457, pp. 409-413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannikova, A.A., Matveev, V.A. & Kramerov, D.A. Using Inter-SINE–PCR to Study Mammalian Phylogeny. Russian Journal of Genetics 38, 714–724 (2002). https://doi.org/10.1023/A:1016056304555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016056304555

Keywords

Navigation