Skip to main content

Advertisement

Log in

Using Ultraconserved Elements to Unravel Lagomorph Phylogenetic Relationships

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Lagomorpha (lagomorphs), the order of mammals including pikas, hares, and rabbits, is distributed on all continents. The order currently is hypothesized to comprise 12 genera and 108 species, split into two families: Ochotonidae (pikas) and Leporidae (rabbits and hares). Molecular and morphological attempts have been undertaken to resolve the phylogeny of lagomorphs, although chronological relationships are still to be established. The aim of this research was to unravel lagomorph phylogeny using ultraconserved elements. We focused on Romerolagus, in light of its largely unknown phylogenetic relationships and sparse fossil record, to assess times of divergence for the genus. We obtained samples from at least one species in each of 11 genera (except Caprolagus) comprising the order and captured and sequenced ultraconserved elements (UCEs). A Maximum-Likelihood phylogenetic analysis was carried out on the 4,195 loci captured, resulting in 59,112 informative sites. We further used BEAST2 v2.6.3 on the CIPRES computing cluster to estimate the timing of cladogenesis in lagomorph evolution. Our results confirm that lagomorphs and rodents split about 65 million years ago. The former further split into its constituent families, Leporidae and Ochotonidae, about 60 million years ago. Pronolagus rupestris and Nesolagus timminsi were retrieved as basal sister taxa; the most recent common ancestor of that clade and remaining leporids was estimated to have existed about 47 million years ago. Romerolagus diazi is sister to remaining Leporidae excluding Pronolagus and Nesolagus, a topology that generally matches previously published phylogenies, although our results suggest a most recent common ancestor of Romerolagus and remaining ingroup leporids at ca. 4.8 Ma (95% highest posterior density [HPD] interval: 5.9 – 3.8 Ma), with an internal diversification in the Middle to Late Pleistocene (0.9 Ma; 95% HPD 1.8 – 0.2 Ma). Our final results yielded a robust phylogeny with high support values for every clade of the order Lagomorpha and unraveled previously unresolved phylogenetic relationships. In addition, we further conclude that the method we used, UCEs, may serve to complete the entire phylogeny of mammals by using existing museum specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

adapted from Ruedas et al. (2019). a. Romerolagus diazi, USNM 57949 (holotype of R. nelsoni Merriam 1896); b. Nesolagus netscheri, MNH (London) 1921.1.18.1 (left, reversed); c. Nesolagus timminsi, MNH (London) 1997.396 (left, reversed). Note the double layer of enamel on the anterior lobe of N. netscheri, stretching from immediately lingual of the central angle to the caudal aspect of the protoflexid. The condition of having two layers of enamel forming a tooth facet in Lagomorpha previously was reported once only (see Ruedas et al. 2019:fig. 6), on the caudal face (rostral facing aspect) of the hypoflexid of the holotype of Sylvilagus incitatus (Bangs, 1901) (Harvard Museum of Comparative Zoology Bangs Collection no. 8441)

Similar content being viewed by others

Availability of Data and Material

All sequences are in process of submission to GenBank.

References 

  • Aguirre E, Soria D (1981) Accumulated bones in a Pliocene cave in Cerro Pelado, Spain. Nat Geog Soc Res Rep 13:69–81.

    Google Scholar 

  • Ahituv N, Zhu Y, Visel A, Holt A, Afzal V, Pennacchio LA, Rubin EM (2007) Deletion of ultraconserved elements yields viable mice. PLoS Biol 5(9):e234. https://doi.org/10.1371/journal.pbio.0050234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albright LB, Woodburne MO, Fremd TJ, Swisher CC, MacFadden BJ, Scott GR (2008) Revised chronostratigraphy and biostratigraphy of the John Day Formation (Turtle Cove and Kimberly Members), Oregon, with implications for updated calibration of the Arikareean North American land mammal age. J Geol 116:211–237.

    Article  Google Scholar 

  • Allen JA (1890) Descriptions of a new species and a new subspecies of the genus Lepus. Bull Amer Mus Nat Hist 3:159–160.

    Google Scholar 

  • Averianov AO (1999) Phylogeny and classification of Leporidae (Mammalia, Lagomorpha). Vestn Zool 33(1-2):41–48.

    Google Scholar 

  • Averianov AO, Abramov AV, Tikhonov AN (2000) A new species of Nesolagus (Lagomorpha, Leporidae) from Vietnam with osteological description. Contrib Zool Inst St Petersb 3:1–22.

    Google Scholar 

  • Averianov AO (2001) Lagomorphs (Mammalia) from the Pleistocene of Eurasia. Paleontol Zhurnal 2:84–92.

    Google Scholar 

  • Asher RJ, Meng J, Wible JR, McKenna MC, Rougier GW, Daszeveg D, Novacek MJ (2005) Stem Lagomorpha and the antiquity of Glires. Science 307:1091–1094.

    Article  CAS  PubMed  Google Scholar 

  • Bachman J (1837) Observations, on the different species of Hares (genus Lepus) inhabiting the United States and Canada. J Acad Nat Sci Phila 7:282–361.

    Google Scholar 

  • Bangs O (1901) The mammals collected in San Miguel Island, Panama, by W. W. Brown, Jr. Am Nat 35:631–644.

    Article  Google Scholar 

  • Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D (2004) Ultraconserved elements in the human genome. Science 304(5675):1321–1325. https://doi.org/10.1126/science.1098119.

    Article  CAS  PubMed  Google Scholar 

  • Benton MJ, Donoghue PC, Asher RJ, Friedman M, Near TJ, Vinther J (2015) Constraints on the timescale of animal evolutionary history. Palaeontol Electron 18(1):1–106.

    Google Scholar 

  • Blair C, Bryson RW, Linkem CW, Lazcano D, Klicka J, McCormack JE (2019) Cryptic diversity in the Mexican highlands: Thousands of UCE loci help illuminate phylogenetic relationships, species limits and divergence times of montane rattlesnakes (Viperidae: Crotalus). Mol Ecol Resour 19(2):349–365. https://doi.org/10.1111/1755-0998.12970.

    Article  PubMed  Google Scholar 

  • Blyth E (1845) Description of Caprolagus, a new genus of leporine Mammalia. J Asiat Soc Bengal 14(pt. 1):247–249.

    Google Scholar 

  • Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A. (2007). The delayed rise of present-day mammals. Nature 446(7135):507–512. https://doi.org/10.1038/nature05634.

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2129. https://doi.org/10.1093/bioinformatics/btu170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537.

  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu C-H, Xie D, Zhang C, Stadler T, Drummond AJ (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:e1006650.

  • Bryson DI, Fan C, Guo LT, Miller C, Söll D, Liu DR (2017) Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem Biol 13(12), 1253-1260. https://doi.org/10.1038/nchembio.2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgin CJ, Colella JP, Kahn PL, Upham NS (2018). How many species of mammals are there? J Mammal 99(1):1-14.

  • Campos PF, Gilbert MTP (2019) DNA extraction from keratin and chitin. In: Shapiro B, Barlow A, Heintzman P, Hofreiter M, Paijmans J, Soares A (eds) Ancient DNA. Methods in Molecular Biology, vol.1963, Humana Press, New York, pp 43–49. https://doi.org/10.1007/978-1-4939-9176-1_7.

  • Corbet, G. B. (1983). A review of classification in the family Leporidae. Acta Zool Fenn 174:11–15.

    Google Scholar 

  • Cope ED (1881) Review of the Rodentia of the Miocene period of North America. Bull US Geol Geog Surv 6:361–386.

    Google Scholar 

  • Davis WB (1939) The Recent Mammals of Idaho. Caxton Printers, Ltd. Caldwell, Idaho.

    Google Scholar 

  • Dawson MR (1958) Later Tertiary Leporidae of North America. Univ Kans Paleontol Contrib Vertebr 6:1–75.

    Google Scholar 

  • Dawson MR (1981) Evolution of the modern lagomorphs. In: Myers K, MacInnes CD (eds) Proceedings of the World Lagomorph Conference, Guelph, Ontario, pp. 1–8.

  • Derti A, Roth FP, Church GM, Wu CT (2006) Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants. Nat Genet 38:1216–1220. https://doi.org/10.1038/ng1888.

    Article  CAS  PubMed  Google Scholar 

  • Díaz A (1893) Catálogo de los objetos que componen el contingente de la Comisión, precedido de algunas notas sobre su organización y trabajos. Exposición Internacional Columbina en Chicago. Comisión Ceográfico Exploradora, República Mexicana, México, Distrito Federal.

  • Dice LR (1917) Systematic position of several Tertiary lagomorphs. Univ Calif Publ Bull Dept Geol 10:179–183.

    Google Scholar 

  • Dice LR (1929) The phylogeny of the Leporidae, with description of a new genus. J Mammal 10(4):340–344. https://doi.org/10.2307/1374124.

    Article  Google Scholar 

  • Dice LR (1931) Alilepus, a new name to replace Allolagus Dice, preoccupied, and notes on several species of fossil hares. J Mammal 12:159–160.

    Article  Google Scholar 

  • Evanoff E, Prothero DR, Lander RH. (1992) Eocene-Oligocene climatic change in North America: the White River Formation near Douglas, east-central Wyoming. In: DR Prothero WA Berggren (eds) Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press. Princeton, New Jersey, pp 116-130.

  • Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC (2012) Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol 61(5):717–726. https://doi.org/10.1093/sysbio/sys004.

    Article  PubMed  Google Scholar 

  • Faircloth BC (2013) Illumiprocessor: a trimmomatic wrapper for parallel adapter and quality trimming. https://doi.org/10.6079/J9ILL. https://github.com/faircloth-lab/illumiprocessor.

  • Faircloth BC, Branstetter MG, White ND, Brady SG (2015) Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Mol Ecol Resour 15:489–501. https://doi.org/10.1111/1755-0998.12328.

    Article  CAS  PubMed  Google Scholar 

  • Faircloth BC (2016) PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32(5):786–788. https://doi.org/10.1093/bioinformatics/btv646.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MS., Jones, MR, Callahan CM, Farelo L, Tolesa Z, Suchentrunk F, Boursot P, Mills LS, Alves PC, Good JM and Melo-Ferreira J (2021). The legacy of recurrent introgression during the radiation of hares. Syst Biol 70(3), 593-607. https://doi.org/10.1093/sysbio/syaa088

    Article  PubMed  Google Scholar 

  • Flynn LJ, Winkler AJ, Erbaeva M, Alexeeva N, Anders U, Angelone C, Čermák S, Fladerer FA, Kraatz B, Ruedas L A, Ruf I, Tomida Y, Veitschegger K, Zhang Z (2014) The Leporid Datum: a late Miocene biotic marker. Mamm Rev 44(3–4):164–176.

    Article  Google Scholar 

  • Forsyth-Major CI (1899) On fossil and Recent Lagomorpha. Trans Linn Soc London Ser 2 7:433–520+39 Pl.

  • Fostowicz-Frelik Ł (2013) Reassessment of Chadrolagus and Litolagus (Mammalia: Lagomorpha) and a new genus of North American Eocene lagomorph from Wyoming. Am Mus Novit 3773:1–76.

    Article  Google Scholar 

  • Gazin CL (1942) The Late Cenozoic vertebrate faunas from the San Pedro Valley, Ariz. Proc US Natl Mus 92(3155):475–518.

    Article  Google Scholar 

  • Ge D, Wen Z, Xia L, Zhang Z, Erbajeva M, Huang C, Yang Q (2013) Evolutionary history of lagomorphs in response to global environmental change. PLoS One 8(4):e59668. https://doi.org/10.1371/journal.pone.0059668.

  • Ge D, Xia L, Yao L, Zhang Z, Yang Q (2015) Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contrib Zool 84(4):267–284. https://doi.org/10.1163/18759866-08404001.

    Article  Google Scholar 

  • Giarla TC, Voss RS, Jansa SA (2010) Species limits and phylogenetic relationships in the didelphid marsupial genus Thylamys based on mitochondrial DNA sequences and morphology. Bull Am Mus Nat Hist 346:1–67. https://doi.org/10.1206/716.1.

    Article  Google Scholar 

  • Gray JE (1867) Notes on the skulls of hares (Leporidæ) and picas (Lagomyidæ) in the British Museum. Ann Mag Nat Hist, 3rd Ser 20:219–225.

  • Grinnell J, Dixon J, Linsdale JM (1930) Vertebrate natural history of a section of Northern California through the Lassen Peak Region. Univ Calif Publ Zool 35:1–594.

    Google Scholar 

  • Gureev AA (1964) Фayнa CCCP, Mлeкoпитaющиe, тoм 3, yвp. 10, Зaйцeoбpaзныe (Lagomorpha) [Fauna of the USSR, mammals, vol. 3, pt. 10, Lagomorpha]. Nauka, Moscow and Leningrad [in Russian].

  • Hackländer K, Ferrand N, Alves PC (2008) Overview of Lagomorph Research: What we have learned and what we still need to do. In: Alves PC, Ferrand N, Hackländer K (eds) Lagomorph Biology, Springer, Berlin, Heidelberg, pp. 381–391. https://doi.org/10.1007/978-3-540-72446-9_26.

  • Halanych KM, Robinson TJ (1999) Multiple substitutions affect the phylogenetic utility of cytochrome b and 12S rDNA data: Examining a rapid radiation in leporid (Lagomorpha) evolution. J Mol Evol 48:369–379. https://doi.org/10.1007/PL00006481.

    Article  CAS  PubMed  Google Scholar 

  • Hall ER (1951) A synopsis of the North American Lagomorpha. U Kans Publ Mus Nat Hist 5:119–202.

    Google Scholar 

  • Hall ER (1981) The Mammals of North America. Vol. 1. John Wiley & Sons. New York.

    Google Scholar 

  • Hibbard CW (1963) The Origin of the P3 Pattern of Sylvilagus, Caprolagus, Oryctolagus and Lepus. J Mammal 44(1):1–15. https://doi.org/10.2307/1377162.

    Article  Google Scholar 

  • Illumina (2018) bcl2fastq Conversion Software v1.8.4. Illumina.

  • Kamiya M, Suzuki H, Villa RB (1979) A new anoplocephaline cestode, Anoplocephaloides romerolagi sp. n. parasitic in the volcano rabbit, Romerolagus diazi. Jpn J Vet Res 27(3-4):67–71. https://doi.org/10.14943/jjvr.27.3-4.67.

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraatz B, Sherratt E (2016) Evolutionary morphology of the rabbit skull. PeerJ 4:e2453. https://doi.org/10.7717/peerj.2453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriegs JO, Zemann A, Churakov G, Matzke A, Ohme M, Zischler H, Brosius J, Kryger U, Schmitz J (2010) Retroposon insertions provide insights into deep lagomorph evolution. Mol Biol Evol 27(12):2678–2681. https://doi.org/10.1093/molbev/msq162.

    Article  CAS  PubMed  Google Scholar 

  • Leidy J (1865) Notices of remains of extinct Mammalia, discovered by Dr. F. V. Hayden, in Nebraska Territory. Proc Acad Nat Sci Philadelphia 8:88–90.

    Google Scholar 

  • Li C (1977) Paleocene eurymyloids (Anagalida, Mammalia) of Qianshan, China. Vertebrata Palasiatica 15(2):103–118+II plates (in Chinese with English summary).

  • Li C, Wang YQ, Zhang ZQ, Mao FY, Meng J (2016) A new mimotonidan Mina hui (Mammalia, Glires) from the Middle Paleocene of Qianshan, Anhui, China. Vert PalAs 54(2):121–136.

    Google Scholar 

  • Lilljeborg W (1874) Sveriges och Norges Ryggradsdjur, 1 : Duggdjuren. Schultz, Upsala.

  • Link D.H.F., 1795. Beyträge zur Naturgeschichte. Rostock und Leipzig 1(part 2),1–126.

  • Linnaeus C (1758) Sistema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Editio decima, reformata, v. 1: Regnum animale. Laurentii Salvii, Stockholm, Sweden.

  • López-Cuamatzi IL, Ortega J, Baeza JA (2021) The complete mitochondrial genome of the 'Zacatuche' Volcano rabbit (Romerolagus diazi), an endemic and endangered species from the Volcanic Belt of Central Mexico. Mol Biol Rep online ahead of print at https://doi.org/10.1007/s11033-021-06940-7.

  • Lyon Jr MW (1904) Classification of the hares and their allies. Smithson Misc Collect 45:321–447+pl. LXXIV–C.

  • Macdonald JR (1970) Review of the Miocene Wounded Knee faunas of southwestern South Dakota. Bull Los Angeles County Mus Nat Hist, Sci 8:165–182.

    Google Scholar 

  • Matthee CA, Van Vuuren BJ, Bell D, Robinson TJ (2004) A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst Biol 53(3):433–447. https://doi.org/10.1080/10635150490445715.

    Article  PubMed  Google Scholar 

  • McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC (2012) Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res 22:746–754. https://doi.org/10.1101/gr.125864.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT (2013) A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS One 8(1):e54848. https://doi.org/10.1371/journal.pone.0054848.

  • McCormack JE, Rodríguez-Gómez F, Tsai WLE, Faircloth BC (2017) Transforming museum specimens into genomic resources 1. In: MS Webster (ed) The Extended Specimen: Emerging Frontiers in Collections-Based Ornithological Research. CRC Press: 143–156.

  • McDonough MM, Parker LD, McInerney NR, Campana MG, Maldonado JE (2018) Performance of commonly requested destructive museum samples for mammalian genomic studies. J Mammal 99(4):789–802. https://doi.org/10.1093/jmammal/gyy080.

    Article  Google Scholar 

  • McKenna MC, Bell SK (1997) A classification of mammals above the species level. Columbia University Press, New York.

    Google Scholar 

  • Meng J, Bowen GJ, Ye J, Koch PL, Ting S, Li Q, Jin X (2004) Gomphos elkema (Glires, Mammalia) from the Erlian Basin: Evidence for the Early Tertiary Bumbanian Land Mammal Age in Nei-Mongol, China. Am Mus Novit 3425:1–24.

    Article  Google Scholar 

  • Merriam CH (1891) Results of a biological reconnoissance of Idaho, south of latitude 45º and east of the thirty-eighth meridian, made during the summer of 1890, with annotated lists of the mammals and birds, and descriptions of new species. N Am Fauna 5:1–127+4 pl.

  • Merriam CH (1896) Romerolagus nelsoni, a new genus and species of rabbit from Mt. Popocatepetl, Mexico. Proc Biol Soc Wash 10:169–174.

    Google Scholar 

  • Merriam CH (1898) A new genus (Neotomodon) and three new species of murine rodents from the mountains of southern Mexico. Proc Biol Soc Wash 12:127–129.

    Google Scholar 

  • Miller Jr GS (1900) A new subgenus for Lepus idahoensis. Proc Biol Soc Wash 13:157.

    Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. SC10 Workshop on Gateway Computing Environments (GCE10).

  • Nelson EW (1909) The rabbits of North America. N Am Fauna 29:1–314+XIII pl.

  • O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Collins LS, de Queiroz A, Farris DW, Norris RD, Stallard RF, Woodburne MO, Aguilera O, Aubry M-P, Berggren WA, Budd AF, Cozzuol MA, Coppard SE, Duque-Caro H, Finnegan S, Gasparini GM, Grossman EL, Johnson KG, Keigwin LD, Knowlton N, Leigh EG, Leonard-Pingel JS, Marko PB, Pyenson ND, Rachello-Dolmen PG, Soibelzon E, Soibelzon L, Todd JA, Vermeij GJ, and Jackson JBC (2016) Formation of the Isthmus of Panama. Sci Adv 2(8):e1600883.

  • Orr RT (1940) The rabbits of California. Occas Pap Calif Acad Sci 19:1–27.

    Google Scholar 

  • Osuna F, González D, de los Monteros AE, Guerrero JA (2020) Phylogeography of the Volcano Rabbit (Romerolagus diazi): the evolutionary history of a mountain specialist molded by the climatic-volcanism interaction in the Central Mexican Highlands. J Mamm Evol 27:745–757. https://doi.org/10.1007/s10914-019-09493-6.

    Article  Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G., Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67(5):901.

  • Robinson TJ (1980) Comparative chromosome studies in the family Leporidae (Lagomorpha: Mammalia). Cytogenet Cell Genet 28:64–70.

    Article  CAS  PubMed  Google Scholar 

  • Robinson TJ, Elder FFB, Lopez-Forment W (1981) Banding studies in the volcano rabbit, Romerolagus diazi, and Crawshay’s hare, L. crawshayi: evidence of the leporid ancestral karyotype. Can J Genet Cytol 23:469–474.

    Article  Google Scholar 

  • Robinson TJ, Yang F, Harrison WR (2002) Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha). Cytogenet Genome Res 96:223–227.

    Article  CAS  PubMed  Google Scholar 

  • Robinson TJ, Matthee CA (2005) Phylogeny and evolutionary origins of the Leporidae: A review of cytogenetics, molecular analyses and a supermatrix analysis. Mamm Rev 35(3–4):231–247. https://doi.org/10.1111/j.1365-2907.2005.00073.x.

    Article  Google Scholar 

  • Rose KD, DeLeon VB, Missiaen P, Rana RS, Sahni A, Singh L, Smith T (2008) Early Eocene lagomorph (Mammalia) from Western India and the early diversification of Lagomorpha. Proc Royal Soc B 275:1203–1208. https://doi.org/10.1098/rspb.2007.1661.

    Article  Google Scholar 

  • Ruedas LA, Marques SS, French JH, Platt RN, Salazar–Bravo J, Mora JM, Thompson CW (2017) A prolegomenon to the systematics of South American cottontail rabbits (Mammalia, Lagomorpha, Leporidae: Sylvilagus): designation of a neotype for S. brasiliensis (Linnaeus, 1758), and restoration of S. andinus (Thomas, 1897) and S. tapetillus Thomas, 1913. Misc Publ Mus Zool Univ Mich 205:1–67.

    Google Scholar 

  • Ruedas LA, Mora JM, Lanier HC (2018) Evolution of lagomorphs. In: Smith AT, Johnston CH, Alves PC, Hackländer K (eds) Lagomorphs: Pikas, Rabbits, and Hares of the World, Johns Hopkins University Press, Baltimore, Maryland, pp. 4–8.

    Google Scholar 

  • Ruedas LA, Silva SM, French JH, Platt II RN, Salazar–Bravo J, Mora JM, Thompson CW (2019) Taxonomy of the Sylvilagus brasiliensis complex in Central and South America (Lagomorpha: Leporidae). J Mammal 100:1599–1630. https://doi.org/10.1093/jmammal/gyz126.

    Article  Google Scholar 

  • Sandelin A, Bailey P, Bruce S, Engström PG, Klos JM, Wasserman WW, Ericson J, Lenhard B (2004) Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes. BMC Genom 5:99. https://doi.org/10.1186/1471-2164-5-99

    Article  CAS  Google Scholar 

  • Secretaría de Medio Ambiente y Recursos Naturales, 2010. NOM-059-SEMARNAT-2010, Diario Oficial de la Federación.

  • Silva SM, Ruedas LA, Santos LH, E Silva JDS, Aleixo A (2019) Illuminating the obscured phylogenetic radiation of South American Sylvilagus Gray, 1867 (Lagomorpha: Leporidae). J Mammal 100(1):31–44. https://doi.org/10.1093/jmammal/gyy186.

    Article  Google Scholar 

  • Simons C, Pheasant M, Makunin IV, Mattick JS (2006) Transposon-free regions in mammalian genomes. Genome Res 16:164–172. https://doi.org/10.1101/gr.4624306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson GG (1945). The principles of classification and a classification of mammals. Bull Amer Mus Nat Hist 85:1–350.

  • Smith A (1834) An epitome of African zoology; or, a concise description of the objects of the Animal Kingdom inhabiting Africa, its islands and seas. South Afr Quart J 2:174–175.

  • Soto D, Heinke D, Humphreys GW, Blanco MJ (2005) Early, involuntary top-down guidance of attention from working memory. J Exp Psychol: Human Perception and Performance 31(2):248–261.

  • Sparwel M, Doronina L, Churakov G, Stegemann A, Brosius J, Robinson TJ, Schmitz J (2019) The volcano rabbit in the phylogenetic network of lagomorphs. Genome Biol Evol 11(1):11–16. https://doi.org/10.1093/gbe/evy257.

    Article  PubMed  Google Scholar 

  • St. Leger J (1932) A new genus for the Uganda hare (Lepus marjorita). J Zool 102:119–123.

    Google Scholar 

  • Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen S, Pheasant M, Makunin IV, Mattick JS (2008) Large-scale appearance of ultraconserved elements in tetrapod genomes and slowdown of the molecular clock. Mol Biol Evol 25(2):402–408. https://doi.org/10.1093/molbev/msm268.

    Article  CAS  PubMed  Google Scholar 

  • Stone W (1900) Descriptions of a new rabbit from the Liu Kiu Islands and a new flying squirrel from Borneo. Proceedings of the Academy of Natural Sciences of Philadelphia 52:460-463.

  • Stoner CJ, Bininda-Emonds, ORP, Caro T (2003) The adaptive significance of coloration in lagomorphs. Biol J Linn Soc 79:309–328. https://doi.org/10.1046/j.1095-8312.2003.00190.x.

    Article  Google Scholar 

  • Storer JE (1984) Mammals of the Swift Current Creek Local Fauna (Eocene: Uintan), Saskatchewan. Nat Hist Contrib Saskatchewan Museum of Natural History 7:1–158.

    Google Scholar 

  • Su C, Nei M (1999) Fifty-million-year-old polymorphism at an immunoglobulin variable region gene locus in the rabbit evolutionary lineage. Proc Nat Acad Sci USA 96:9710–9715. https://doi.org/10.1073/pnas.96.17.9710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawadros EE (2001) Geology of Egypt and Libya. Balkema, Rotterdam.

    Google Scholar 

  • Thomas O (1929) On mammals from the Kaoko-Veld, South-West Africa, obtained during Captain Shortridge’s fifth Percy Sladen and Kaffrarian Museum Expedition. J Zool 99:99–111.

    Google Scholar 

  • Upham NS, Esselstyn AA, Jetz W (2019) Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PloS Biology 17(12):e3000494.

  • Velazquez A, Cervantes FA, Galindo-Leal C (1993) The volcano rabbit Romerolagus diazi, a peculiar lagomorph. Lutra 36: 62–70.

    Google Scholar 

  • Velázquez A, Guerrero JA (2019) Romerolagus diazi. The IUCN Red List of Threatened Species 2019: e.T19742A45180356. https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T19742A45180356.en.

  • Verde-Arregoitia LD, Leach K, Reid N, Fisher DO (2015) Diversity, extinction, and threat status in Lagomorphs. Ecography 38(11):1155–1165. https://doi.org/10.1111/ecog.01063.

    Article  Google Scholar 

  • von Koenigswald W, Anders U, Engels S, Schultz JA, Ruf I (2010) Tooth morphology in fossil and extant Lagomorpha (Mammalia) reflects different mastication patterns. J Mammal Evol 17:275–299.

    Article  Google Scholar 

  • Voorhies MR, Timperley CL (1997) A new Pronotolagus (Lagomorpha: Leporidae) and other leporids from the Valentine Railway Quarries (Barstovian, Nebraska), and the archaeolagine-leporine transition. J Vertebr Paleontol 17(4):725-737.

    Article  Google Scholar 

  • Waterhouse GR (1848) A natural history of the Mammalia. Vol. II. Containing the order Rodentia, or gnawing Mammalia. Hippolyte Baillère, London, United Kingdom.

  • White JA (1987) The Archaeolaginae (Mammalia, Lagomorpha) of North America, excluding Archaeolagus and Panolax. J Vertebr Paleontol 7:425–450.

    Article  Google Scholar 

  • White JA (1991) North American Leporinae (Mammalia: Lagomorpha) from late Miocene (Clarendonian) to latest Pliocene (Blancan). J Vertebr Paleontol 11:67–89.

    Article  Google Scholar 

  • Wible, J. R. 2007. On the cranial osteology of the Lagomorpha. Bull Carnegie Mus Nat Hist 39:213–234.

    Article  Google Scholar 

  • Whitfield JB, Lockhart PJ (2007) Deciphering ancient rapid radiations. Trends Ecol Evol 22(5):258–265. https://doi.org/10.1016/j.tree.2007.01.012.

    Article  PubMed  Google Scholar 

  • Wood AE (1940) Part III. Lagomorpha. Trans Amer Phil Soc, New Ser 28:271–362.

    Article  Google Scholar 

  • Woodburne MO (2010) The Great American Biotic Interchange: Dispersals, tectonics, climate, sea level and holding pens. J Mamm Evol 17:245–264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada F, Takaki M, Suzuki H (2002) Molecular phylogeny of Japanese Leporidae, the amami rabbit Pentalagus furnessi, the Japanese hare Lepus brachyurus, and the mountain hare Lepus timidus, inferred from mitochondrial DNA sequences. Genes Genet Syst 77(2):107–116. https://doi.org/10.1266/ggs.77.107.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Sayyari E, Mirarab S. (2017). ASTRAL-III: increased scalability and impacts of contracting low support branches. In: RECOMB International Workshop on Comparative Genomics. Springer, Cham, pp 53-75. https://doi.org/10.1007/978-3-319-67979-24.

  • Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. https://doi.org/10.1101/gr.074492.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present research was submitted in partial fulfilment to obtain the grade of Masters in Biological Sciences of the first author. We thank the “Posgrado en Ciencias Biológicas” from the “Universidad Nacional Autónoma de México (Programa 134, Entidad 97, Plan 4085, Orientación 4)”. We acknowledge the support from, and the samples of Lepus flavigularis donated by Dra. Consuelo Lorenzo Monterrubio and the staff of the Mammal Collection from ECOSUR ; the “Dirección General de Zoológicos y Conservación de la Fauna Silvestre”, “Dirección de Operación Científica y Técnica” and “Chapultepec Zoo” for samples of Romerolagus diazi; the Zoology Museum “Alfonso L. Herrera” of the Faculty of Sciences—UNAM (MZFC-M) for R. diazi, Sylvilagus floridanus, Sylvilagus cunicularius, and Neotomodon alstoni; the Surgery Office from the School of Medicine – UNAM for Oryctolagus cuniculus; the Museum of Comparative Zoology (MCZ-CRYO, Mammalogy) of Harvard University for Bunolagus monticularis and Caprolagus [= Lepus] sinensis flaviventris; the Mammal Division of the University of Michigan Museum of Zoology for the donation of the Pentalagus furnessi sample; the Mammal Collection of the University of New Mexico – Museum of Southwestern Biology, for Brachylagus idahoensis; the Department of Mammalogy of the American Museum of Natural History for Nesolagus timminsi; the Division of Mammals at The Field Museum of Natural History for Ochotona princeps lasalensis, Caprolagus hispidus, and especially Pronolagus rupestris nyikae and Poelagus marjorita, specimens of which were collected by J. C. Kerbis Peterhans. Special thanks to A. W. Ferguson and K. Feldheim for their support in the process of collecting samples and lab work at the Pritzker Laboratory for Molecular Systematics and Evolution. Portions of this work were undertaken under the auspices of NSF grant DEB–0616305 to L.A. Ruedas, who also thanks D. Lunde and A. L. Gardner (USNM) and R. Portela Míguez (MNH London) for access to specimens whose dentitions were illustrated. Support to conclude this manuscript came from UNAM-DGAPA-PAPIIT (Project IN105721). N. Arkhanhelskaya provided a through English editorial review of the present version.

Author information

Authors and Affiliations

Authors

Contributions

Estefania Cano-Sánchez: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data Curation, Writing-Original Draft, Visualization; Flor Rodríguez-Gómez: Software, Validation, Formal analysis, Writing-Review & Editing, Visualization, Supervision; Ken Oyama: Conceptualization, Writing-Review & Editing, Funding acquisition; Livia León-Paniagua: Conceptualization, Resources, Writing-Review & Editing, Supervision; Luis A. Ruedas: Re-scope of the contribution, data analyses, outreach and Writing-Review & Editing; Alicia Mastretta-Yanes: Conceptualization Writing-Review & Editing; Alejandro Velazquez: Conceptualization, Investigation, Funding acquisition, Writing-Review & Editing, Supervision, Project administration.

Corresponding author

Correspondence to Alejandro Velazquez.

Ethics declarations

The authors declare that the present contribution has not been published nor submitted to another journal. It is a research outcome derived from the work of the authors and institutional permissions granted ethical compliance standards attended. We further declare that there are no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cano-Sánchez, E., Rodríguez-Gómez, F., Ruedas, L.A. et al. Using Ultraconserved Elements to Unravel Lagomorph Phylogenetic Relationships. J Mammal Evol 29, 395–411 (2022). https://doi.org/10.1007/s10914-021-09595-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-021-09595-0

Keywords

Navigation